Japanese Math Olympiad | 2020

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 72

  • @littlefermat
    @littlefermat 3 роки тому +53

    In other words, when you are given some ugly quantity is a perfect square, Always try proving that this quantity is between two consecutive perfect squares.
    And your problem will be done!

    • @TechToppers
      @TechToppers 3 роки тому +4

      Yup! A typical bounding trip which I got to know 3 months back.

    • @mukaddastaj5223
      @mukaddastaj5223 3 роки тому +4

      Lol, i dunno why, but we call it policeman's lemma😂

  • @AlephThree
    @AlephThree 3 роки тому +59

    Nice. I like the style of leaving some of the easier bits as HW and avoiding a 20 minute video.

  • @mcwulf25
    @mcwulf25 3 роки тому +18

    Well explained. I like it when the answer isn't just 0 or 1.

  • @kevinmartin7760
    @kevinmartin7760 3 роки тому +12

    Around 9:00 when he offers a^2+2a+1 as being greater or equal to a^2+a+2 this is only true of a>0.
    By this point though we could have observed that the formula m=2^(a+1)-3 gives a negative m when a is zero and so excluded this case.

  • @Luxaray2000
    @Luxaray2000 3 роки тому +9

    My favorite proof of the "exponential outpaces polynomial" fact is the following:
    Let P(x) = sum a_i x_i be a polynomial and E(x) be some exponential function e^(kx).
    Then lim as x tends to infinity of E(x) / P(x) is infinity by L'Hospital.
    This is because the quotient is infinity / infinity, so applying L'Hospital we get an exponential over a polynomial of degree 1 minus what we started with. Continuing this process will leave a constant polynomial in the bottom and infinity in the top.

    • @GhostyOcean
      @GhostyOcean 3 роки тому +1

      Important caveats:
      (1) this is directionally dependant. So if x is going to positive infinity, k>0 or else e^(kx)

    • @mirkorosner1044
      @mirkorosner1044 Рік тому

      Yes, but this does not give a quantitative bound.

  • @GreenMeansGOF
    @GreenMeansGOF 3 роки тому +9

    What happens if we allow m,n to be negative?
    EDIT: The fact that we always want a perfect square forces n to be positive. If we allow m to be negative, then it can be argued similar to how it was done in the video that m=-1 and n=1 is the only other possible solution over the integers.

  • @GhostyOcean
    @GhostyOcean 3 роки тому +17

    5:48 I don't understand why the middle term must be a perfect square. I follow the proof up to that point, but this step confuses me.
    Edit: OH! It's part of the requirements on the left. I couldn't see because Michael was standing in front of it.

    • @TechToppers
      @TechToppers 3 роки тому +4

      We want it to be. It's not necessary. According to the problem statement.

  • @vinc17fr
    @vinc17fr 3 роки тому +4

    No need for calculus to prove that 2^a > (a+1)^2 for a ≥ 6. This can be done by induction: true for a = 6, and then 2^a doubles at each iteration while the factor for the square is ((a+2)/(a+1))^2 < 2.

  • @JMTchongMbami
    @JMTchongMbami 3 роки тому +2

    8:58 a²+a+2

  • @ShinySwalot
    @ShinySwalot 3 роки тому +69

    I was just warming up to studying Japanese, this sort of counts right?

  • @ΓιώργοςΚοτσάλης-σ1η

    Inequality proved by calculus could also be proved by induction more easily

  • @morbidmanatee5550
    @morbidmanatee5550 3 роки тому

    Brilliant! Love this channel

  • @Reliquancy
    @Reliquancy 3 роки тому +2

    I thought this was going to be one of the ones where all the possible values are like 2 and 3, but that 61 and 11 works is kind of surprising.

    • @danielleza908
      @danielleza908 Рік тому

      They probably wrote the question intentionally to suit to those numbers.

  • @reshmikuntichandra4535
    @reshmikuntichandra4535 3 роки тому +7

    Hey Michael,
    It'd be great if you tried some problems from the 2021 INMO(Indian National Mathematical Olympiad).
    Regards,
    Adarsha Chandra(Fan from India)

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +27

    13:57 それはいいところで止まっている

  • @robonthecob5092
    @robonthecob5092 Рік тому +1

    4:10 why is this possible? Why can we just put that bound on m

    • @GeoPeron
      @GeoPeron 15 днів тому

      This is confusing, so I recommend switching the orders in which he made the assumptions. First note how the polynomial that bounds m is less that 2^(a+2), then substitute that in for m in the bottom to create an inequality and notice how it factors into (2^a + 2)²

  • @Ardient_
    @Ardient_ 3 роки тому +5

    Here is an extremely hard math problem you can try:
    Find all (a,b,c) which are natural numbers which satisfy both of these equations:
    1/a=(1/b)+(1/c)+(1/abc) and (a^2)+(b^2)=c^2
    dosen't seem like much but trust me it is a monster to prove.....

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +16

    HOMEWORK : Let n be an even number which is divisible by a prime bigger than √n. Show that n and n^3 cannot be expressed in the form 1 + (2x + 1)(2x + 3), i.e., as one more than the product of two consecutive odd numbers, but that n^2 and n^4 can be so expressed.
    SOURCE : Suggested for the 25th Spanish Olympiad but that didn’t make the cut.

    • @noahtaul
      @noahtaul 3 роки тому +2

      The conclusion is equivalent to the number being an even perfect square, so obviously n^2 and n^4 are, but n (and therefore n^3) can’t be because it can only have one copy of the large prime in its factorization.

    • @keyanaskar1981
      @keyanaskar1981 3 роки тому

      Video was uploaded 1 week ago, then how is your comment 3 weeks old?

    • @goodplacetostop2973
      @goodplacetostop2973 3 роки тому

      @@keyanaskar1981 Time travel

    • @particleonazock2246
      @particleonazock2246 3 роки тому

      Nice brother, but wth.

    • @andy-kg5fb
      @andy-kg5fb 2 роки тому +1

      1+(2x+1)(2x+3) is (2x+2)².
      Let p be the prime larger then √n that divides n.
      Then we have p²>n;
      Therefore p² does not divide n.
      Hence n is not a perfect square.
      Similarly you can prove that n³ is not a perfect square.
      N²,n⁴ are perfect squares therefore we can express them as (2x+2)² with x=(n/2)-1 and (n²/2)-1 respectively. Both of which must be natural.

  • @ekramulhaque8028
    @ekramulhaque8028 3 роки тому +1

    One more way to solve;
    (n^2+1) is divisible by 2m
    So n^2+1 is even; consequently n^2 is odd. Therefore n is odd.
    n-1 is even. Let (n-1)/2=k ( eq.1). Where k is some natural no.
    n-1=2k. 2^(n-1)+m+4= 2^2k+m+4= (2k)^2+m+2^2.
    Now; 2^(n-1)+m+4 is a perfect square. So (2k)^2+m+2^2 is a perfect square.
    So 'm' must be equal to +2*2*2^k or -2*2*2^k.
    as it will give (2^k +/- 2)^2
    since m is natural.
    We have m=2*2*2^k
    2^k=m/4. 2= kth root of (m/4).
    Now k cannot be grater than 2 other m/4 will not be a natural no. and cannot be equal to 2. so k=1 or 2.
    putting (n-1)/2 =k= 1 or 2 (by eq.1)
    Therefore n=3 or n=5

    • @kensmusic1134
      @kensmusic1134 2 роки тому

      but this is false. 25+1/2^k+3 which is not an integer

  • @Jack_Callcott_AU
    @Jack_Callcott_AU 3 роки тому

    Nice little sojourn!

  • @amiasam3354
    @amiasam3354 3 роки тому +6

    I am a time traveller

  • @Subrankur
    @Subrankur 6 місяців тому

    The intervention prism in math is equal to zero. Not equal one of n
    And one value.

  • @anshuldeshmukhansh7390
    @anshuldeshmukhansh7390 3 роки тому +2

    I got one answer (m,n) = (1,3) by just observation
    But second answer is quite surprising 😅😉😁👍
    Thank you...

  • @fatimahmath4819
    @fatimahmath4819 3 роки тому

    1:13 why did you already delete the m value??

  • @hongphitrinh6015
    @hongphitrinh6015 2 роки тому

    Why 2^(2a)+m+4

  • @xCorvus7x
    @xCorvus7x 3 роки тому +3

    Well, we don't need to check the perfect square condition at all, since m was constructed to be a perfect square.

  • @fatimahmath4819
    @fatimahmath4819 3 роки тому

    2:15 why did you say that the denominator is equal or less than the numerator

    • @harivatsaparameshwaran4174
      @harivatsaparameshwaran4174 3 роки тому +1

      Otherwise you can get fractions / decimals and according to the question you can get only natural numbers.

    • @fatimahmath4819
      @fatimahmath4819 3 роки тому

      @@harivatsaparameshwaran4174 thank you very much

  • @matthewdodd1262
    @matthewdodd1262 3 роки тому

    Its not hard to see how m

  • @MathElite
    @MathElite 3 роки тому +10

    Nice video, this comment is for the algorithm

  • @serdarbozdag3749
    @serdarbozdag3749 3 роки тому

    Harder one next time please!

  • @richardaa6819
    @richardaa6819 3 роки тому

    this was really interesting

  • @FedeMumble
    @FedeMumble 3 роки тому

    Nice video

  • @egillandersson1780
    @egillandersson1780 3 роки тому

    Great !

  • @helo3827
    @helo3827 3 роки тому +2

    can someone please explain to me how to prove 2a^2+2a+1

    • @SSGranor
      @SSGranor 3 роки тому +1

      This is a little inelegant; but, here goes. Assume there is some value of a such that 2a^2+2a+1=2.
      So, what this shows is that if the inequality holds for any a>=2, it also holds for all higher values of a. And, it just remains to check 0, 1, and 2, which is simple enough and returns 1

    • @yukihyde1
      @yukihyde1 3 роки тому +1

      a mathematical induction!

  • @tahirimathscienceonlinetea4273
    @tahirimathscienceonlinetea4273 3 роки тому +2

    It's very nice work .I love this challenge 👍👍👍

  • @mukaddastaj5223
    @mukaddastaj5223 3 роки тому +2

    Выручили!) Мне как раз сегодня дали эту задачку, я порешала, но ничего не вышло( а это видео быдо на очереди к просмотру уже месяц, и вот как пригодилось🤩🤩

  • @stewartcopeland4950
    @stewartcopeland4950 3 роки тому +3

    the couple m = 5, n = 57 seems to work but you will see below why it isn't , through informed responses

    • @erikpedersen2245
      @erikpedersen2245 3 роки тому

      sqrt(2^(57-1) + 5 + 4) = 268,435,456.0000000167638063...
      so m = 5 n = 57 doesn't work, 2^{n-1} + m + 4 isn't perfect square

    • @stewartcopeland4950
      @stewartcopeland4950 3 роки тому

      @@erikpedersen2245 Indeed, my digital calculation software rounds this number to an integer...

    • @richardsandmeyer4431
      @richardsandmeyer4431 3 роки тому

      You seem to be incorrect here. (5,57) satisfies the first condition, namely (57^2+1)/(2*5) = 325 which is an integer. However, the second condition yields: 2^(57-1)+5+4 = 2^56+9 which is not a perfect square. It lies strictly between two consecutive perfect squares, namely (2^28)^2 and (2^28+1)^2, and therefore cannot be a perfect square itself.
      Did sqrt(2^56+9) perhaps look like an integer on a computer with insufficient precision?

    • @athysw.e.9562
      @athysw.e.9562 3 роки тому +1

      He proved mathematically there's no other solution, Python won't help you...

  • @jermeekable
    @jermeekable 3 роки тому +1

    please sir... can I get some theoretical maths thats not niche equation solutions?

  • @shivam5105
    @shivam5105 3 роки тому

    Nice

  • @gibbry93
    @gibbry93 3 роки тому

    Bella appiddaveru.

  • @prithujsarkar2010
    @prithujsarkar2010 3 роки тому

    Weeb problem FTW! Great!

  • @OuroborosVengeance
    @OuroborosVengeance 3 роки тому +1

    I follow math elite idea
    Great video btw

  • @pokoknyaakuimut001
    @pokoknyaakuimut001 3 роки тому

    😍😍😍

  • @tomatrix7525
    @tomatrix7525 3 роки тому

    Nice