Ratio Test -- Radius of Convergence | MIT 18.01SC Single Variable Calculus, Fall 2010

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 118

  • @diegocarranza2209
    @diegocarranza2209 11 років тому +57

    i want to travel usa to give a hug to all the mit teachers, seriously

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому +3

    Society needs more women like this: educated, radiating confidence, and living life 🙌🏽❤️. This was a phenomenal lecture, and really ties gracefully into the previous one on why the radius of convergence makes sense in the first place.

  • @georgesadler7830
    @georgesadler7830 3 роки тому +1

    This is beautiful explanation of the Radius of Convergence that is base on the Ratio Test. Professor Breiner your performance is off the mathematical charts.

  • @albam.sosag.7274
    @albam.sosag.7274 3 роки тому +1

    What a beautiful way of teaching this subject, thank you Christine!

  • @hhkchildhood4146
    @hhkchildhood4146 11 років тому +9

    Crystal clear about the concept after watching - you're amazing, Thank you :)

  • @thenanc100
    @thenanc100 12 років тому +8

    I learned more in 18:01 than I learned in an hour of class!

  • @Procrastinat3
    @Procrastinat3 12 років тому

    this helped me. and i actually found mistakes made in lecture notes by my prof. absolute life saver !

  • @TheFrosty831
    @TheFrosty831 6 років тому

    This video was so helpful. It made this concept so simple. I cannot thank you enough. Also helped with the basic algebra a ton, which can be the hardest part sometime!

  • @CarlosDominguez-yr1ic
    @CarlosDominguez-yr1ic 7 років тому +2

    Corrections previously made by Jose Orton and Mike H: In the fourth exercise at the minute 15:18 of this video, the power series shown corresponds to cosh(x). (hyperbolic cosine) Verification:
    The Maclaurin series of e^x is:
    e^x = 1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + x^5/(5!) + x^6/(6!) + x^7/(7!) + x^8/(8!) +……
    The Maclaurin series of e^( - x ) can be obtained substituting - x in the above series:
    e^( - x ) = 1 + ( - x) + ( - x)^2/(2!) + ( - x)^3/(3!) + ( - x)^4/(4!) + ( - x)^5/(5!) + ( - x)^6/(6!) + ( -x)^7/(7!) + ( - x )^8/(8!) +……
    I got:
    e^( - x ) = 1 - x + x^2/(2!) - x^3/(3!) + x^4/(4!) - x^5/(5!) + x^6/(6!) - x^7/(7!) + x^8/(8!) +……
    And hyperbolic cosine is:
    Cosh x = (1/2)[e^x + e^( - x )]
    I substituted the series of e^x and e^( - x ) in the above formula:
    Cosh x = (1/2)[ 1 + x + x^2/(2!) + x^3/(3!) + x^4/(4!) + x^5/(5!) + x^6/(6!) + x^7/(7!) + x^8/(8!) +…… + 1 - x + x^2/(2!) - x^3/(3!) + x^4/(4!) - x^5/(5!) + x^6/(6!) - x^7/(7!) + x^8/(8!) +……]
    Cosh x = (1/2)[ 2 + 2x^2/(2!) + 2x^4/(4!) + 2x^6/(6!) + 2x^8/(8!) +…… ]
    Cosh x = (1/2)2[ 1 + x^2/(2!) + x^4/(4!) + x^6/(6!) + x^8/(8!) +…… ]
    Cosh x = [ 1 + x^2/(2!) + x^4/(4!) + x^6/(6!) + x^8/(8!) +…… ]
    Cosh x = Summation from n = 0 to ∞ of [ x ^ (2n) / (2n)! ]
    My name is Carlos Vicente Dominguez. I am a graduate student of the specialization in electric power systems at Central University of Venezuela in Caracas. Best regards from Venezuela.

  • @JohnSmith-lp3ku
    @JohnSmith-lp3ku 11 років тому

    +Dominic Dill
    Think about it like this: Divide both the numerator and the denominator by n. Then, we have 1/(1+1/n). As n approaches infinity, you can see that 1/n approaches zero and the fraction therefore approaches one.

  • @عليشطا
    @عليشطا 12 років тому +2

    Dear sister, thank you for your good performance and I pray to God to help you in the service of humanity
    ((Egyptian mathematics teacher))

  • @thejudgeholden
    @thejudgeholden 13 років тому

    Her enthusiasm is admirable

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому

    If I ever went to university, MIT's one of the few schools (honestly the only one I have in mind) that I would attend if accepted. Their level of academic instruction is GOLDEN 🏆

  • @onayr36
    @onayr36 14 років тому

    This video really helped clear up the idea of radius of convergence for me thanks!

  • @GodofStories
    @GodofStories 12 років тому

    This is a recitation, and covers the material in more simplicity for students having trouble. Lectures also go through basics, because that is how a class of Calculus 2 or BC is supposed to be. People who want can always take more advanced classes or accelerated honors classes for which most of MIT probably are a part of. Like any other college MIT, has a large assortment of different majors from Business to International relations to the more stereotyped MIT major Engineering.

  • @aborgeshonorato
    @aborgeshonorato 4 роки тому

    I could listen 👂 all day 🙂
    Amazing Teacher and Professor

  • @pwnagenation1
    @pwnagenation1 13 років тому +1

    OMG THANK YOU, I was trying to determine what to do when lim n-->infinity of some n times x and it finally got explained at the end and i havent found it anywhere!

  • @khoeruloemam
    @khoeruloemam 13 років тому

    your explanation is very vivid. I can understand. Thank you...Hopefully one day, I can study in MIT..

  • @kylieshinez
    @kylieshinez 5 років тому

    omg thank you so much, I just needed a simple explanation of how to find the radius of convergence and every other video I came across just finds the interval of convergence, which I understand, but doesn't go over the radius

  • @Krotazazz
    @Krotazazz 13 років тому

    The series in the last example is actually hyperbolic cosine, aka cosh(x), which is not alternating like cosine :-)

  • @musaabalmasrouri4942
    @musaabalmasrouri4942 11 років тому

    i don't how to think u ... u really useful and easy to follow

  • @10joseorton
    @10joseorton 9 років тому +10

    CORRECTION::: EX 4 is the series of cosh (x)

  • @EmirKuljanin
    @EmirKuljanin 13 років тому

    Thanks for explaining that the limit of (x/n+1) is 0 because x is fixed and outrun by n+1. My textbook just skips directly to 1/n+1, which made me believe I couldn't do basic algebra.

  • @spiniferites
    @spiniferites 3 роки тому

    I love this teacher! Amazing explanation!

  • @dereish0618
    @dereish0618 12 років тому

    Thank you very much!!!
    I am preparing for AP Calculus BC and it helps me a lot!!!

  • @jwexler2
    @jwexler2 13 років тому

    a real math teacher, wish binghamton had those

  • @Krotazazz
    @Krotazazz 13 років тому

    dandaman113 is surely right, it is missing the (-1)^n factor. Other than that, an absolutely explicit and concise explanation of radius of convergence.

  • @imegatrone
    @imegatrone 13 років тому

    I Really Like The Video From Your Ratio Test -- Radius of Convergence

  • @77Evangelico
    @77Evangelico 6 років тому +1

    Amazing woman

  • @biswajitprodhan67
    @biswajitprodhan67 2 роки тому

    Hello I am from India and I really like teaching and mits professors

  • @zahidrafiq2943
    @zahidrafiq2943 4 роки тому

    Good lec and explanation method is also good

  • @themindfulmint
    @themindfulmint 13 років тому

    Ma'am this video was a great help to me!
    Thanks alot for posting MIT lectures :)

  • @MikeFletcher3141
    @MikeFletcher3141 12 років тому

    Not that it changes the end result, but that last power series is not cosine, but the hyperbolic cosine.

  • @TulliusAgrippa
    @TulliusAgrippa 10 років тому +4

    Cosine series alternates in sign. Your series has all terms positive. (Ex 4)

    • @vangrails
      @vangrails 10 років тому +1

      I think it is cosh instead of cos.

    • @matiasarias2347
      @matiasarias2347 5 років тому +1

      Is the hyperbolic cosine, so that is the reason why all signs are positive

  • @AG-kw7kw
    @AG-kw7kw 11 років тому +2

    Wish my professor could explain it like this.
    Thanks from Ga!

    • @trakr09
      @trakr09 10 років тому +1

      My thoughts exactly! Having a professor that can communicate this well is priceless.

  • @QuantumDisciple7
    @QuantumDisciple7 12 років тому

    The limit of 1/n does not exist because it diverges;however, 1/n^2 converges to 0.

  • @bhavyajain9560601333
    @bhavyajain9560601333 12 років тому

    Damn she is a very good teacher I just understand it easily

  • @justpaulo
    @justpaulo 3 роки тому

    I don't think that Ex. #4 is the cosine series because in the Taylor series of the cosine the sign alternates between (+) and (-).
    For instance the X²/2! term should be negative. That is not the case in Ex. #4.
    EDIT: I saw below that someone already pointed this out. Ex. #4 turns out it is the series for cosh(x).

  • @daudessa7262
    @daudessa7262 4 роки тому

    If you are life up to now im say you Thank you teacher ❤️

  • @thokchomyaiphabameitei2631
    @thokchomyaiphabameitei2631 7 років тому

    easy to catch and love it

  • @mohammedatif9759
    @mohammedatif9759 6 років тому

    Mam, Thank you so much for being helpful to us.

  • @hokala5
    @hokala5 10 років тому +1

    this video helps me a lot
    really appreciate

  • @fp2k69
    @fp2k69 13 років тому

    Very helpful video. Thank you for streaming this. Really helped me!.... Lovely instructor too :D

  • @bigbawsdogg
    @bigbawsdogg 13 років тому

    @dominicdill take the limits dude: consider lim x--->infinity of x/(x+1) = lim----->infinity of 1/(1+1/x) = 1

  • @Iberedmas
    @Iberedmas 12 років тому

    Thank You for your honest.

  • @thaiazngrl510
    @thaiazngrl510 13 років тому

    wow you are so helpful! You are much clearer than my professor. Thank You :)

  • @abdelrahmangamalmahdy
    @abdelrahmangamalmahdy 11 років тому

    thank u for this video , I am not american person , In addition, I don't speak english well ... but I always follows you , thanks

  • @Ditiro100
    @Ditiro100 11 років тому

    Shes amazing

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому

    Yes, this was informative!

  • @Michael13207
    @Michael13207 11 років тому

    Example four was not cosx as it was not an alternating series.

  • @devnampriyapriyadarshi1331
    @devnampriyapriyadarshi1331 5 років тому +3

    You are making me confused. In one statement you are saying that radius of convergence is limit a(n+1)/a(n) and in another statement you are saying 1/ limit of the previous value. 🤔

  • @aman_
    @aman_ 6 років тому

    Great explanation...

  • @wertherquartett
    @wertherquartett 4 роки тому

    To divide (x/2)^(n+1) by (x/2)^n she unpacks that expression instead of simply observing that (y^(n+1))/(y^n) = y ... I wonder y? 😀

  • @aborgeshonorato
    @aborgeshonorato 4 роки тому

    Amazing 😁🤩

  • @sxdrgsalchl1
    @sxdrgsalchl1 13 років тому

    It was very informative. Thank you.

  • @JuiceBoxBoiii
    @JuiceBoxBoiii 5 років тому

    You're awesome

  • @dominicdill
    @dominicdill 13 років тому

    For the third example, why is the limit as n approaches infinity of n/(n+1) = 1? Wouldn't this be infinity over infinity which does not simplify to 1?

  • @thomaskim5394
    @thomaskim5394 3 роки тому

    The Lim sup of root test is a better way to find the radius of convergence.

  • @yejinjeon8887
    @yejinjeon8887 11 років тому

    Wow, so so SO informative. Thank you so much! :)

  • @דורוןגרינשטיין
    @דורוןגרינשטיין 8 років тому

    (on EX. 4, the series is the function - absolute value of SIN(x
    not just SIN(x)

  • @Blackfate416
    @Blackfate416 13 років тому

    this helped sooooooo much

  • @cainesdds
    @cainesdds 11 років тому +1

    Great Teacher

  • @Seshane1
    @Seshane1 14 років тому

    Very helpful. Thank you!

  • @mark_tilltill6664
    @mark_tilltill6664 5 років тому

    9:33 those are monomials

  • @MrSivilla
    @MrSivilla 3 роки тому

    Infinity factorial @11:20...😀

  • @drpen4108
    @drpen4108 2 роки тому

    very intelligent woman.

  • @deadlybug
    @deadlybug 13 років тому

    Sure was!

  • @YUH186
    @YUH186 13 років тому

    thanks !!

  • @abdelrahmangamalmahdy
    @abdelrahmangamalmahdy 11 років тому

    please upload video for the differential equations (second order)

  • @benjamintettey
    @benjamintettey 12 років тому

    finding the limit of 1/n gives one and that of 1/n^2 is also one. so which of the two converges of diverges?

  • @Mr_Karmayogi
    @Mr_Karmayogi 12 років тому

    great HELP

  • @pingpongdawn
    @pingpongdawn 12 років тому

    what did she say about the 2nd example? X^n/n! It's the Taylor's series for what? Eliax?

  • @TheAustynCr8on
    @TheAustynCr8on 12 років тому

    you are awesome :) Thank you!

  • @bidhankhirali
    @bidhankhirali 7 років тому

    awesome awesome awesome!!!!!!!!!!!!!!

  • @sukantamaity792
    @sukantamaity792 4 роки тому

    Ma'am please solve this problem series m=1 to infinity (X)^(log m)

  • @randomstuff23453
    @randomstuff23453 7 років тому

    I don't understand the last part? how to pull mod x squared out times the whole series part .Help?

  • @mydria1
    @mydria1 11 років тому

    Also insane test's

  • @bhavyajain9560601333
    @bhavyajain9560601333 12 років тому

    Can anyone tell me is this is what is taught in MIT in UG courses?

  • @AesaGaming
    @AesaGaming 12 років тому

    Thank you. Thank you.

  • @simpleplan2528
    @simpleplan2528 5 років тому

    Is Christine still teaching? Where can I find her lecture?

  • @CE113378
    @CE113378 11 років тому

    In multivariable calculus, is the radius of convergence an actual radius? It is odd that it would be called a radius if there was not a situation in which we were in some way talking about a circle.

    • @vangrails
      @vangrails 10 років тому +1

      I think it becomes a 'radius' when you use complex numbers for X, I'm not sure.

  • @connermcbride8008
    @connermcbride8008 5 років тому

    Isn't the last series cosh(x) and not cos(x)?

  • @MIDNightPT4
    @MIDNightPT4 5 років тому

    Lol I had example 2 on my exam yesterday (no I. D.o.n.t go to MIT).
    I got it right 😄

  • @Mr_Karmayogi
    @Mr_Karmayogi 12 років тому

    Please upload a video about TRACING OF CURVE PLEASE!!!!!!URGENTLY!!!!!!!!!!!!!!!

  • @Kekepaniash
    @Kekepaniash 8 років тому

    can you do a problem using trig functions

  • @JGalz
    @JGalz 13 років тому

    Luckies. :p We have to test the end points and get the interval of convergence too. Lameeee. Thanks for the great video though .

  • @QuantumDisciple7
    @QuantumDisciple7 12 років тому

    Yea, I did get a little sloppy in my wording. Thanks

  • @enigma2886
    @enigma2886 6 років тому

    reminds me of leslie winkle from the big bang theory

  • @icebluemyst
    @icebluemyst 12 років тому +1

    Example 1 just use the root test...

  • @kyrpangdkhar6985
    @kyrpangdkhar6985 6 років тому

    Thanks you mum... Love you........ That all i need

  • @PoloLoiTamin
    @PoloLoiTamin 8 років тому

    nice video.........

  • @JUNO00oo
    @JUNO00oo 13 років тому

    why (2n)! equals to 1?

  • @danesh007
    @danesh007 13 років тому

    they don't?

  • @eyosiaswhawariat6536
    @eyosiaswhawariat6536 5 років тому

    i would understand that if u drag z camera little down so that i can see ur 00 clearly

  • @Fightclub1995
    @Fightclub1995 9 років тому

    Wasn't limsup?

  • @varunshah6476
    @varunshah6476 8 років тому

    pls pls help me understand the significance of elliptic integrals.If someone has found some good material pertaining to the topic please redirect me to it.it will be too much helpful to me.I want a complete understanding of the topic.
    I'll be thankful for the help.

  • @yedmavus
    @yedmavus 4 роки тому

    Which chapter of the course is this?

    • @mitocw
      @mitocw  4 роки тому +1

      ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-5-exploring-the-infinite/part-b-taylor-series/session-97-power-series/. Best wishes on your studies!

    • @yedmavus
      @yedmavus 4 роки тому

      @@mitocw Thanks a ton!

  • @rollercoaster478
    @rollercoaster478 10 років тому +2

    Is this for University students or High school pupils?

    • @mitocw
      @mitocw  10 років тому +11

      This video is for anyone who needs to brush-up on this concept.

    • @rollercoaster478
      @rollercoaster478 10 років тому +1

      ***** Ok, very helpfull anyway, thank You!

  • @AldoHernandezMorales
    @AldoHernandezMorales 12 років тому

    turns head* sniffs*

  • @ihkb92
    @ihkb92 13 років тому

    I'm golden :)