Can you find area of the Red and Blue Shaded Trapezoids? | (Trapezium) |

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 52

  • @stilesstislisky355
    @stilesstislisky355 5 місяців тому +3

    💥 🎉

    • @PreMath
      @PreMath  5 місяців тому

      Thanks ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 5 місяців тому +8

    Another solution:
    1) Drop a vertical line through P => You'll get two twin triangles with the same areas (28 cm², 7 cm²)
    2) Two congruent triangles form a rectangle => B with 2 * 28 = 56 cm², D with 2 * 7 cm² = 14 cm²
    3) You'll get two more rectangles at the other corners. Let's call them A (bottom left) and C (top right) according to the corners.
    4) A has half the width, but twice the height, C has half the height, but twice the width. Therefore, A and C must have the same area.
    5) We can also state that D : C = A : B 14 : C = A : 56 AC = A² = C² = 14 * 56 = 784 cm² (since A and C have the same area).
    6) A = C = √784 cm² = 28 cm²
    7) A(blue) = 28 cm² + 28 cm² = 56 cm², C(red) = 7 cm² + 28 cm² = 35 cm²

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 5 місяців тому +5

    A(red&blue) = 7 + 28 + 28 + 28 = 91 scm
    A(red) = 7 + 28 = 35 scm
    A(blue) = 28 + 28 = 56 scm
    It is rather easy to calculate in your head if you assume that the triangle on the right has a stretch factor of 2 (4 times the area) and use clever measurements to start with:
    A(top triangle) = 1/2 * 14 * 1 = 7 scm
    A(bottom triangle) = 1/2 * 28 * 2 = 28 scm
    Now, it is easy to calculate and add up the two congruent triangles and the rectangles in the red and blue areas.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for the feedback ❤️

  • @Mediterranean81
    @Mediterranean81 5 місяців тому +2

    the yellow triangles are similar triangles with a scale factor of 2
    DEP is similar to ADB
    by AA theorem
    we have FB=AE=2x
    so AD=AE+ED=2x+x=3x
    so the scale factor is 3
    Area of ABD= 7*3^2=63
    Blue area = 63-7=56
    since ABD and BCD are both halves of the rectangle
    so their areas are congruent
    Red Area = 63-28=36

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @hongningsuen1348
    @hongningsuen1348 5 місяців тому +2

    For left upper yellow triangle, let its height be h and width be w. Then hw = 2x7 = 14
    From similar yellow triangles area ratio of 1:4 get side ratio is 1:2.
    Then height of rectangle = 3h and width of rectangle = 3w.
    Hence area of rectangle = 3h x 3w = 9hw = 9x14 = 126
    Area of half of rectangle = 126/2 = 63
    Area of blue region = 63 -7 = 56
    Area of red region = 63 - 28 = 35.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @toninhorosa4849
    @toninhorosa4849 5 місяців тому +1

    From point "P" I drew a parallel to the segment DE until reaching the segment DC and marked the point "Q". I formed the triangle DPQ.
    ∆DEP=∆DQP =~∆PBF
    Area ∆PBF = 28 cm^2
    Area ∆DEP = 07 cm^2
    Proportion of Areas∆s = 28/7 = 4 cm^2
    Proportion in extension=√4
    = 2
    If segment EP = b
    Then segment PF = 2b
    If segment DE = a
    Then segment BF = 2a
    I know (a*b)/2 = 7
    Then a*b = 14
    Area of Trapezoid:
    Red Trapezoid = (a*(3b+2b))/2 =5ab/2 = 5*14/2 = 35 cm^2
    Blue Trapezoid= (2a (b+3b))/2
    Blue Trapezoid= 4*ab = 4*14
    Blue Trapezoid= 56 cm^2

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 5 місяців тому +2

    Razón entre áreas de triángulos amarillos =s=28/7=4→ Razón de semejanza =s=√4=2→ DA=h+2h ; DC=b+2b → Área roja =(bh/2)+(2bh) =7+(2*2*7)=7+28=35 ; Área azul =(b2h)+(2b2h/2) =(2*7*2)+28=56.
    Bonito rompecabezas. Gracias y un saludo cordial.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 5 місяців тому +3

    Let's face this challenge:
    .
    ..
    ...
    ....
    .....
    The yellow triangles BFP and DEP are obviously similar. Therefore we can conclude:
    FP/EP = BF/DE = BP/DP = √[A(BFP)/A(DEP)] = √[(28cm²)/(7cm²)] = √4 = 2
    Now we are able to calculate the areas:
    A(red)
    = (1/2)*(CD + FP)*DE
    = (1/2)*(EF + FP)*DE
    = (1/2)*(EP + FP + FP)*DE
    = (1/2)*(EP + 2*FP)*DE
    = (1/2)*(EP + 4*EP)*DE
    = (1/2)*(5*EP)*DE
    = 5*(1/2)*EP*DE
    = 5*A(DEP)
    = 5*7cm²
    = 35cm²
    A(blue)
    = (1/2)*(AB + EP)*BF
    = (1/2)*(EF + EP)*BF
    = (1/2)*(EP + FP + EP)*BF
    = (1/2)*(2*EP + FP)*BF
    = (1/2)*(2*EP + 2*EP)*(2*DE)
    = (1/2)*(4*EP)*(2*DE)
    = 8*(1/2)*EP*DE
    = 8*A(DEP)
    = 8*7cm²
    = 56cm²
    Best regards from Germany

    • @PreMath
      @PreMath  5 місяців тому +1

      Super work!
      Thanks for sharing ❤️🙏

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 місяців тому +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    1) Draw a Vertical Line passing through Point P.
    2) Point between C and D is Point G.
    3) Point between A and B is Point H.
    4) Now we have 4 Rectangles :
    5) Rectangle [DEPG] with Area = 14 sq cm
    6) Rectangle [BFPH] with Area = 56 sq cm
    7) Rectangle [CFPG] with unknown Area
    8) Rectangle [AEPH] with unknown Area
    9) 2D Geometrical Ratio (R^2) between the Area of Triangle [BFPH] and the Area of Triangle [DEPG] ; R^2 = 56 / 14 ; R^2 = 4
    10) Linear Ratio (R) between Sides of those Triangles ; R = sqrt(4) ; R = 2
    11) One must conclude that BH (CG) = 2*AH (DG) and AE (BF) = 2*DE (CF)
    12) Now I can divide the Rectangel [ABCD] in 6 different Rectangles, and 12 Different Triangles; and though determine their Areas.
    13) Rectangel [CDEF] divided in 3 Rectangles; each one with Area = 14 sq cm
    14) Rectangle [ABEF] divided in 3 Rectangles; each one with Area = 28 sq cm
    15) AB = 21 cm
    16) AD = 6 cm
    17) Total Area of [ABCD] = 126 sq cm
    18) Rectangle [ABEF] Area = 28 * 3 = 84 sq cm
    19) Rectangle [CDEF] Area = 14 * 3 = 42 sq cm
    20) Blue Trapezoid Area = (84 - 28) = 56 sq cm
    21) Red Trapezoid Area = (42 - 7) = 35 sq cm
    22) ANSWER : BTA equal to 56 Square Cm and RTA equal to 35 Square Cm.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 21 день тому

    Wonderful method of solve
    Thanks Sir for your efforts
    Thanks PreMath
    ❤❤❤❤

  • @RobertHering-tq7bn
    @RobertHering-tq7bn 5 місяців тому

    Hello, I did it as following. First two points were added, G and H, connected over P and making GH parallel to AD and BC. With this we get rectangles DEPG with size of 14, DPFC with a size of named B, AHPE with a size of named A and HBFP with a size of 56. With this added we have...
    Area(RT) = B+7 and Area(BT) = A+28
    A:14 = EP*HP : (EP*PG) = HP:PG = PZ*HP : (PZ*PG) = 56:B AB = 14*56
    HB:HP = EP:ED HB*ED = EP*HP B = A This is true based on similarty reasons. Now we have...
    AB = A² = 14*56 = 784 = 7²*4² ==> A = 28 and B = 28 . Finally...
    Area(RT) = B+7 = 28 + 7 = 35 Area(BT) = A+28 = 28 + 28 = 56

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 місяців тому +1

    Simple when we see taht triangles DEP and PFB are similar, as the area of BFP is four times the area of BFP we conclude that the dimensions of BFP is two times the dimensions of DEP. So we note ED = k and so AE = 2.k, and also EP = m and also PF = 2.m
    Tha area od triangle DEP is 7, so k.m = 14
    The area of the big rectangle ABCD is (3.k).(3.m) =9.(km) = 9.14 = 126.
    The area of rectangle DEFC is one third of that, so it is 126/3 = 42, and the area of the red trapezoïd is 42 - 7 = 35.
    The area of rectangle EABF is two thirds of 126, so it is 84, and the the area of the blue trapezoïd is 84 - 28 = 56.

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 5 місяців тому +2

    DE*EP/2=7, FB*PF=28, PF=2EP, AB=3EP, FB=2DE, AD=3DE, DE*EP=14, 14*9/2 =63, Area Red Nrapezoid=63-28=35.
    Area Blue Trapezoid=63-7=56.

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 5 місяців тому +1

    If ∠EPD = α, and ∠PDE = β, where β and α are complementary angles that sum to 90°, then as ∠FPB is a vertical angle of ∠EPD, ∠FPB = α, and thus ∠PBF = β. Therefore ∆DEP and ∆BFP are similar triangles. As the area of ∆BFP is four times the area of ∆DEP, then BF = 2DE and FP = 2EP. Proof below:
    BF/FP = k

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @kettlebellBob
    @kettlebellBob 5 місяців тому +4

    You can't have a triangle with side x and area x² The ratio of the areas of similar polygons is square of the ratio of the sides

  • @phungpham1725
    @phungpham1725 5 місяців тому

    1/ The two yellow triangles are similar and the area of the big one is 4 times bigger than the small one, which means that the ratio of the relevant sides is 2 times.
    So, PF=2PE, and FB=2ED …
    2/ From P just draw the PH and PK perpdndicular to AB and CD we czn easily find out that:
    Blue area= 2((7+7)+28=56 sq units
    Red area=. (7 + 2x14)= 35 sq units

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 5 місяців тому +1

    7:28=1:2^2, therefore the red area is 7+14×2=7×5=35, the blue area is 28+56×(1/2)=56.😊

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 5 місяців тому +1

    Thanks Sir
    We are learning more and more from like these exercises.
    ❤❤❤❤❤❤
    My respects

    • @PreMath
      @PreMath  5 місяців тому

      It's my pleasure, dear🌹
      Thanks for the feedback ❤️

  • @batavuskoga
    @batavuskoga 5 місяців тому +1

    I solved it completely different
    Let's say FP=x, BF=y, triangle BFP : area=xy/2 --> xy=56
    EP must be x/2, DE=y/2, because area triangle DEP=x/2*y*2*1/2=xy/8=7
    AB=CD=3x/2, AD=BC=3y/2
    Now let's calculate the blue trapezium
    area blue=(x/2+3x/2)*y*1/2=2x*y*1/2=xy
    area blue=56
    area red=(3x/2+x)*y/2*1/2=5x/2*y/2*1/2=5xy/8=5*56/8=35
    area red=35
    I also calculated the area of the rectangle to check my solution, everything was ok.

    • @PreMath
      @PreMath  5 місяців тому

      Excellent!
      Thanks for sharing ❤️

  • @johnryder1713
    @johnryder1713 5 місяців тому

    If a shapes length is x and it is a triangle how is x ^2 I thought that would be only true of a square please can you tell me? Or is that only with some triangles?

  • @MrPaulc222
    @MrPaulc222 5 місяців тому +2

    Calling the areas of the red and blue trapezoids r and b respectively, r + 28 = b + 7 due to the diagonal.
    b - r = 21
    Not certain, but I think the large yellow triangle muct be double the size of the small yellow triangle in both directions, so I am tempted to state that the non-hypotenuse side lengths are 2 by 7 and 4 by 14, although it doesn't look that way on the diagram.
    If that is the case, the rectangle is 21 by 6, making a total area of 126.
    As the triangles take up 35 of that, the two trapezoids total 91.
    Back to b - r = 21 and now b + r = 91
    Add the two equations for 2b = 112, so b = 56.
    As b = 56, r = 35
    Blue trapezoid = 56 sq un
    Red trapezoid = 35 sq un
    I have a feeling that I went wrong because I think it should be more complicated than that.
    However, either side of the diagonal comes to 63.
    EDIT: I have returned to this because I wasn't entirely happy that I chose assumed values for the triangles' sides, so I have chosen other lengths to verify my answer.
    Let the small triangle have side lengths of 12 and 14/12 (or 7/6) because (12*(7/6))/2 = 7. This means that the larger triangle has sides of 24 and 7/3 giving an area of 28.
    The rectangle would now be 36 by 21/6, giving a rectangle area of 126. Yes, I thought it would be the case that the area is 126 whichever way I slice it, but I needed to verify.

    • @PreMath
      @PreMath  5 місяців тому +2

      Excellent!
      Thanks for sharing ❤️

  • @keithwood6459
    @keithwood6459 5 місяців тому

    Can do it graphically in seconds once similarity is recognized.

  • @PierreBUSSY-b8l
    @PierreBUSSY-b8l 5 місяців тому +1

    magnifique démonstration
    Merci

    • @PreMath
      @PreMath  5 місяців тому

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @raya.pawley3563
    @raya.pawley3563 5 місяців тому

    Thank you

  • @himo3485
    @himo3485 5 місяців тому +2

    7 : 28 = 1 : 4 = 1^2 : 2^2
    DE=x EP=y BF=2x FP=2y
    xy/2=7 xy=14
    rectangle ABCD = 3x*3y=9xy=126
    Red Trapezoid area = 126/2 - 28 = 35cm^2
    Blue Trapezoid area = 126/2 - 7 = 56cm^2

    • @PreMath
      @PreMath  5 місяців тому +1

      Excellent!
      Thanks for sharing ❤️

  • @shreedhanmehta3553
    @shreedhanmehta3553 5 місяців тому

    Noooo... If the areas ratio is 1:4, ie, sides ratio is 9:25... But then the actual sides of the triangle may not necessarily be 1 and 2, then can be 2 and 4 or 10 and 20. So you have to take the sides as x and 2x. ❤❤

  • @msafasharhan
    @msafasharhan 5 місяців тому +1

    Hello,sir what you mean by circle

    • @PreMath
      @PreMath  5 місяців тому

      It is just a number with different identity!
      Thanks for asking❤️

  • @sebasiegrist9341
    @sebasiegrist9341 5 місяців тому

    By moving the point where triangles touch to the center, I got an area of 35 for a quarter of the rectangle. Anyone else?

    • @PreMath
      @PreMath  5 місяців тому

      Thanks for the feedback ❤️

  • @professorrogeriocesar
    @professorrogeriocesar 5 місяців тому

    Show