digital image correlation and convolution with easy animation

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 33

  • @abidhossainmanu7827
    @abidhossainmanu7827 Рік тому

    Nice concept and very easy for understanding.

  • @premcdhiman9749
    @premcdhiman9749 9 місяців тому +1

    if the sum of products is more than 255 in many cases or all case what happens?

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  9 місяців тому

      It will not happen in all cases. Sum is highest where template matches

    • @muhammadiqbalbazmi9275
      @muhammadiqbalbazmi9275 7 місяців тому +1

      @@TheVertex-Engg-Lectures
      What if the other part having all 9's, then won't it be greater than that part?

    • @muhammadiqbalbazmi9275
      @muhammadiqbalbazmi9275 7 місяців тому +1

      @@TheVertex-Engg-Lectures We use Sum of Squared difference or Normalized Cross-correlation? isn't it?

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  7 місяців тому

      @@muhammadiqbalbazmi9275 no

  • @monesseikh1225
    @monesseikh1225 3 роки тому +1

    There is a mistake at 8:45 . The highest value we get is at different point.
    And what if there is a bright portion of image? Then we will get more value than the value of kernel position.
    Please clarify my question.
    and the position i was talking about in the image is (8,5). Please check.

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  3 роки тому

      I will check it out at 8:45, even if all pixels are bright it will match with the same portion in the image. Because we multiplying image pixels with mask

    • @monesseikh1225
      @monesseikh1225 3 роки тому +1

      @@TheVertex-Engg-Lectures So, it is like where we are getting the same value as of the kernel will be the match, not the maximum value?

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  3 роки тому

      @@monesseikh1225 yes absolutely right 👍

  • @sid2372
    @sid2372 3 роки тому +1

    10:17 kya 0 padding krne se ya na krne se answer mei koi fark padega??? For both correlation and convolution..

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  3 роки тому

      Take sample image and try doing with and without padding and verify your answers

  • @akshaykumargurjar8743
    @akshaykumargurjar8743 3 роки тому +1

    ma'am spatial filtering ( complete topic) needed. plz.....
    this is only portion of this topic.

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  3 роки тому +1

      Which university you belong to and
      What are the topics?

    • @akshaykumargurjar8743
      @akshaykumargurjar8743 3 роки тому

      @@TheVertex-Engg-Lectures Rajasthan Technical University, Kota
      Topics: smoothing spatial filter, sharpening spatial filter, 2D DFT,. And Frequency Domain filters

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  3 роки тому +1

      @@akshaykumargurjar8743 smoothing and sharpening already uploaded.
      DFT will be uploaded soon

    • @akshaykumargurjar8743
      @akshaykumargurjar8743 3 роки тому

      @@TheVertex-Engg-Lectures plz upload DFT ASAP, my internals are ongoing

    • @akshaykumargurjar8743
      @akshaykumargurjar8743 3 роки тому

      @@TheVertex-Engg-Lectures Got it.....and Now cleared. Thanks

  • @hardikkurdikar5872
    @hardikkurdikar5872 2 роки тому

    In first example you have not added 0 padding and 2nd example you have added 0 all side .. so when to add and not to add plz tell ma'am ... I have exam tomorrow 😭

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  2 роки тому +1

      Whether to add or not completely depends on size of image and application. If size of image is small it should be added. In exam sometime they ask to do with zero padding. If not asked you can state that you are using zero padding

    • @hardikkurdikar5872
      @hardikkurdikar5872 2 роки тому +1

      @@TheVertex-Engg-Lectures Thanks ♥️ You Earned A Subscriber 💯

    • @TheVertex-Engg-Lectures
      @TheVertex-Engg-Lectures  2 роки тому +1

      @@hardikkurdikar5872 😊 keep learning 👍