Bernoulli Distribution

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 29

  • @365DataScience
    @365DataScience  5 років тому +2

    👉🏻 Download Our Free Data Science Career Guide: bit.ly/2DYQxXs

  • @DargiShameer
    @DargiShameer 4 роки тому +6

    Short and informative. Channel subscribed

  • @beefandpotatoes6525
    @beefandpotatoes6525 Рік тому

    by far this video is the best I have seen on Brn (P). I am going to check his other videos. Thank you very much.

  • @unknownshadow419
    @unknownshadow419 5 років тому +2

    Very good illustration....!
    The examples are easy yet do not loose the essence of the topic

  • @faiqarif5765
    @faiqarif5765 4 роки тому +10

    So basically, its an elementary case of a binomial distribution?

  • @martinganchev3859
    @martinganchev3859 5 років тому +2

    Great video! Thanks, 365!

  • @bluecup25
    @bluecup25 5 років тому +7

    I think the order in the "Probability Distributions" is reversed, this should come before the Binomial, right? Thanks, loving these, extremely helpful and concise.

  • @nicorobin7666
    @nicorobin7666 5 років тому +9

    Who is the evil soul that disliked such an excellent video

    • @abdulosman8846
      @abdulosman8846 3 роки тому +1

      23 people failed high school math

    • @anayoanyafulu1237
      @anayoanyafulu1237 9 місяців тому +1

      There is no dislikes anymore

    • @NAHOMADDIS
      @NAHOMADDIS 11 днів тому

      Thanks to youtube owners​@@anayoanyafulu1237

  • @แพนดาโอะ
    @แพนดาโอะ 6 місяців тому

    Thank you so much❤

  • @douaahilali255
    @douaahilali255 4 роки тому +1

    Thank you

  • @sajidbhai855
    @sajidbhai855 4 роки тому +1

    Can you tell in which of the branches of engineering probability and binomial distribution used

  • @tinyasira6132
    @tinyasira6132 2 роки тому

    in 2:22 how to get the second line? like the values of x0- miu and then (0-p)^2 I didn't get that

  • @000004458
    @000004458 3 роки тому +1

    Good 👍🏻

  • @roopinm.p5964
    @roopinm.p5964 3 роки тому

    How to calculate mode and median for this distribution?

  • @shafiqshams3065
    @shafiqshams3065 5 років тому +1

    Why variance is not equal to p . (1 - p)^2 ??

  • @manrar8419
    @manrar8419 2 роки тому

    mazza aa gaya bhaijaan

  • @archanalawande1984
    @archanalawande1984 2 роки тому

    For a Bernoulli r.v.x, μ3=0.7 what is Var( X) ?

  • @GodGuy8
    @GodGuy8 5 років тому +1

    Good deal!

  • @smbdcry
    @smbdcry 2 роки тому

    2:15 I have seeking the steps before variance standard formula jumping into p(1-p) … does anyone know the missing parts. Really wanna know what’s the middle steps.. otherwise I had to hard code in my memory

    • @adityashrivastava6517
      @adityashrivastava6517 8 місяців тому

      The variance of a Bernoulli distributed X {\displaystyle X} is
      Var ⁡ [ X ] = p q = p ( 1 − p ) {\displaystyle \operatorname {Var} [X]=pq=p(1-p)}
      We first find
      E ⁡ [ X 2 ] = Pr ( X = 1 ) ⋅ 1 2 + Pr ( X = 0 ) ⋅ 0 2 = p ⋅ 1 2 + q ⋅ 0 2 = p = E ⁡ [ X ] {\displaystyle \operatorname {E} [X^{2}]=\Pr(X=1)\cdot 1^{2}+\Pr(X=0)\cdot 0^{2}=p\cdot 1^{2}+q\cdot 0^{2}=p=\operatorname {E} [X]}
      From this follows
      Var ⁡ [ X ] = E ⁡ [ X 2 ] − E ⁡ [ X ] 2 = E ⁡ [ X ] − E ⁡ [ X ] 2 = p − p 2 = p ( 1 − p ) = p q {\displaystyle \operatorname {Var} [X]=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}=\operatorname {E} [X]-\operatorname {E} [X]^{2}=p-p^{2}=p(1-p)=pq}[3]
      With this result it is easy to prove that, for any Bernoulli distribution, its variance will have a value inside [ 0 , 1 / 4 ] {\displaystyle [0,1/4]}.

  • @shiffin_chippe
    @shiffin_chippe 5 років тому +1

    Try uploading once in three days

  • @mariacristinatejada8953
    @mariacristinatejada8953 4 роки тому +1

    Mi broder

  • @mariacristinatejada8953
    @mariacristinatejada8953 4 роки тому +1

    My broder is god

  • @sayantandas3984
    @sayantandas3984 2 роки тому

    bhaad mai jao bhai

  • @obi6753
    @obi6753 3 роки тому

    Thank you