Introduction to the Bernoulli Distribution

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 153

  • @entidoe8
    @entidoe8 9 років тому +160

    yeah he is CRYSTAL CLEAR in all of his lectures . straight to the point . most important point is that he takes minimal time and teaches maximum of the topic . Very few can maintain this balance between precise explanation , wonderful time management , and the way he presents the topic, keeps the concentration going on till the end of the lecture . thank you very much jbstatistics

    • @DailyDarsh
      @DailyDarsh Рік тому +9

      This comment is older than my brother

  • @jbstatistics
    @jbstatistics  11 років тому +7

    You're welcome! And thanks for the compliment. I'm glad you find my videos helpful!

  • @rinskydances93
    @rinskydances93 9 років тому +31

    Thank you SO much. I was nearly in tears trying to understand the jibberish our lecturer was throwing at us. You give clear explanations of WHAT is happening, HOW and WHY, which is what students need and teachers just don't get it :(. Your videos are giving me hope to pass Business Statistics ! Thanks again.

  • @lofi_ish5613
    @lofi_ish5613 2 роки тому +3

    omg, you are the best. I hope you do well in life. I am in this class where my teacher has absolutely 0 idea of how to teach. all she does is just read the slides and expect us to understand all of this.
    it is so stupid and frustrating. I got a quiz worth 5 percent of my grade and an assignment worth 8 percent of my grade to do this week.
    you are a lifesaver.

  • @Blackmetalstudios
    @Blackmetalstudios 7 років тому +86

    took my teacher 45 minutes to explain what you did in 5, thanks

    • @jbstatistics
      @jbstatistics  7 років тому +31

      I try to be concise and get to the point. Sometimes I'm successful :)

    • @SaqibAlikhantanoli
      @SaqibAlikhantanoli 4 роки тому +1

      ​@@jbstatistics Can you please do a video on Weibull Distribution and Finding it Fitting Parameters (Weilbull Fitting).
      Thank you for great tutorials!

    • @ultimatefraudcrymier2633
      @ultimatefraudcrymier2633 3 роки тому +1

      @@jbstatistics thanks a lot
      My master was not at all willing to teach us this in online classes

    • @alvarorubenvera5915
      @alvarorubenvera5915 3 роки тому

      @@ultimatefraudcrymier2633 We all know we pay university to watch videos on youtube

    • @kashaf1423
      @kashaf1423 2 роки тому +1

      Same🤝😂

  • @cherishburks1396
    @cherishburks1396 3 роки тому +2

    My guy, you are better than Khan Academy!

  • @VS-ey2lf
    @VS-ey2lf 6 років тому +1

    Sir, you're truly a legend!! If I didn't find you on youtube I might fail the class!! I have a test tomorrow watching all your tutorials. Already watched the whole playlist of basics of probability, now I'm on this one. Thanks again

  • @kenhuang1871
    @kenhuang1871 9 років тому +14

    I find these explanations to be very clear. Thanks for helping us all understand stats!

    • @jbstatistics
      @jbstatistics  9 років тому +5

      +Ken Huang You are very welcome. And thanks for the compliment!

  • @jbstatistics
    @jbstatistics  11 років тому +1

    You are welcome Kim! I'm glad you like them.

  • @Hersh0828
    @Hersh0828 2 роки тому +2

    Underrated statement 3:43 - "What is the point of all this?"

    • @jbstatistics
      @jbstatistics  2 роки тому +2

      I try not to just teach the specific topics, but why we might care about it.

  • @yousufazad6914
    @yousufazad6914 6 років тому +1

    much like the Bernoulli Distribution, this video is short, concise and to the point. Good job mate!

  • @reabetsoeadoro8966
    @reabetsoeadoro8966 6 років тому

    I am so sad that I am only discovering your channel. You are highly appreciated

  • @joshguevara9570
    @joshguevara9570 4 роки тому

    Amazing dude. Clear, concise and straight to the point.

  • @anomienormie8126
    @anomienormie8126 5 років тому

    Very nice and concise. Clear notes and pronunciation.

  • @faruqsandi6184
    @faruqsandi6184 6 років тому

    What a great explanation. Cristal clear in 301 seconds. Thank you.

  • @manshisinha7953
    @manshisinha7953 6 років тому +3

    I've been searching for a video like this for a while and at last i found it. This helped a lot ..thanks🖤
    Keep up the good work!

  • @starja4477
    @starja4477 4 роки тому +3

    Your videos are so amazing

  • @jyotikavarmani4454
    @jyotikavarmani4454 7 років тому +1

    Thank you very much for this and every video of yours. I've been through so many videos of statistics before coming to your videos. And you are simply the best. Your clarity and precision are outstanding. Thanks again :)

    • @jbstatistics
      @jbstatistics  7 років тому

      You are very welcome, and thanks so much for the kind words!

  • @MexterO123
    @MexterO123 10 років тому +7

    Why can't statistics class be like this. :/ Straight to the point.

    • @johnn8759
      @johnn8759 7 років тому

      Memo Pony You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @DetectiveConan990v3
    @DetectiveConan990v3 Рік тому

    man this is so much more helpful than my professor

  • @GoodLuckForever-wi9kb
    @GoodLuckForever-wi9kb Рік тому

    Best Of Luck Forever
    For Sharing Such a Deep Knowledge in such a simple way.
    Well Done Sir

  • @aidanwhite8670
    @aidanwhite8670 7 років тому +20

    Thanks for not making this a 20 minute video

    • @johnn8759
      @johnn8759 7 років тому

      Aidan White You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @MrAlbashiri
    @MrAlbashiri 9 років тому

    The explanation is Crystal clear. Thank you for the amazing video.

  • @krystiantomczuk4836
    @krystiantomczuk4836 6 років тому +1

    Great explanation. I really like how clean your video is, very focused on the current task at hand. Superb!

  • @scanguru
    @scanguru 9 років тому +3

    Love the videos. great explanation. Simple and clear. Thanks for creating them.

  • @bilbm5208
    @bilbm5208 8 років тому +2

    Sir, You're making my life better ! thank you so much :)

    • @johnn8759
      @johnn8759 7 років тому

      Bilal Boumaad You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @priyakiran6402
    @priyakiran6402 5 років тому

    Very nice and to the point inputs....keep going

  • @vijaybangari496
    @vijaybangari496 8 років тому

    better,simple,useful and exactly what's required explanation...

    • @johnn8759
      @johnn8759 7 років тому

      Vijay Bangari You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @paralokesh9991
    @paralokesh9991 9 років тому

    Great mouse writer and excellent lecture.

  • @AmaniAridja
    @AmaniAridja 8 місяців тому

    I really appreciate your explanation please do some exercises of discrete probability distribution

  • @observever7808
    @observever7808 4 роки тому +3

    One of the best 5 minutes of my life LOL

  • @TheChumbotxj9
    @TheChumbotxj9 6 років тому +1

    These videos saved me!! Thanks for making them!

  • @m3tz13
    @m3tz13 11 років тому +6

    Thank you so much ! :D omg I'm really thankful for this awesome, clear and simple lesson.

    • @jbstatistics
      @jbstatistics  11 років тому

      You are very welcome. And thanks for the compliment!

  • @Jack-dx7qb
    @Jack-dx7qb 6 років тому

    Thank you sir for making this *informative* and *crystal-clear* video.

  • @valeriereid2337
    @valeriereid2337 5 місяців тому +1

    Excellent.

  • @hanheeyang9837
    @hanheeyang9837 4 роки тому +1

    thanks bro, u better then ma teacher. and u gots da good voice

  • @otsogilelecta
    @otsogilelecta 11 років тому

    far much better than ma lecture's notes

  • @roadkil899
    @roadkil899 10 років тому

    Man I love you..Missed those lec in the Uni and I have finals from another week..Now I'm learning from you..Thank you sooooo much :D

  • @ziekaman2450
    @ziekaman2450 2 роки тому +2

    sorry a little bit too abstract for me. Very unclear what the difference between X and x actually is. Also no idea how to find p.

    • @kaizerbyparthpratyush217
      @kaizerbyparthpratyush217 6 місяців тому

      It's basic algebra bro X and x are the same place holder. Eg- X = x could be X = 4.

  • @harryli2546
    @harryli2546 2 роки тому +1

    hey guys, quick questions, can we assume x = 3 or 4 instead of 1 or 0? Would that function still hold?

    • @jbstatistics
      @jbstatistics  2 роки тому +1

      No, it wouldn't work as is. If you want to write P(X=3) = 1-p and P(X=4) = p in one function, then you'd have to tweak the Bernoulli pmf to P(X=x) = p^(x-3)(1-p)^(4-x) for x = 3, 4.

  • @pidchayaninchutipattana7612

    Youve just saved my life

  • @ulamss5
    @ulamss5 Рік тому +1

    So little x can only be 0 or 1?

  • @rachsteve3996
    @rachsteve3996 6 років тому

    Wow bro what an explanation Thankssss😇😇😇

  • @jbstatistics
    @jbstatistics  12 років тому

    You are welcome!

  • @auggie081
    @auggie081 10 років тому +59

    You have awesome videos man, I hope they start getting more attention... Seriously, you >>> Khan academy

    • @jbstatistics
      @jbstatistics  10 років тому +15

      Thanks for the compliments auggie! I agree with all your points :)

    • @anika_ara9363
      @anika_ara9363 9 років тому

      totally agree with you! I have found this today and I am loving it! :-D

    • @anika_ara9363
      @anika_ara9363 9 років тому +1

      totally agree with you! I have found this today and I am loving it! :-D

    • @jbstatistics
      @jbstatistics  9 років тому +1

      +Anika_Ara Thanks! I'm glad you find them helpful!

    • @Jeremy_Fisher
      @Jeremy_Fisher 4 роки тому +2

      Khan Academy is good for most things. Their strength is the sheer amount of topics they cover. But in general, I find more specific channels like jbstatistics, are better for learning specific topics. Well done, jbstatstics, you did a great job on your channel.

  • @surbhikohli8559
    @surbhikohli8559 10 років тому +2

    extremely helpful video. Superb explanation

  • @adminenetzone6330
    @adminenetzone6330 Рік тому

    Do all descrete probablity distributions depend on bernoulli trail? Or there are descrete distributions that depend on other trails?

  • @helenso9462
    @helenso9462 Рік тому

    YOU ARE AMAZING SIR maybe god bless you!

  • @WilliamKinaan
    @WilliamKinaan 9 років тому +1

    Kindly why the mean equals to "p"? Should it be "[ (p) + (1-p) ] / 2" = 0.5 ?

  • @kimmusak1611
    @kimmusak1611 11 років тому

    Thanks for the great videos you have them here

  • @jas08057
    @jas08057 4 роки тому

    Perfect explanation, thank you so much!!!

  • @anirudhthatipelli8765
    @anirudhthatipelli8765 Рік тому

    Thanks, this was very clear.

  • @halkcompany7173
    @halkcompany7173 5 років тому

    In 5 minutes I understood more than in a 90-minute lecture

  • @yangxuanxuan
    @yangxuanxuan 7 років тому

    very clear and decent explanation, thank you!

  • @giraganipallavi4594
    @giraganipallavi4594 3 роки тому

    thq very much sir ur videos are helpfull

  • @thedeathofbirth0763
    @thedeathofbirth0763 10 місяців тому

    You simply rock!

  • @gpminsuk
    @gpminsuk 5 років тому

    Question.. let's say I pull an American adult once a month. And number of American adult lawyers increases over time (p changes over time). Is this still Bernoulli distribution?

    • @jbstatistics
      @jbstatistics  5 років тому

      For the Bernoulli, n = 1, so each time you draw an American the # of lawyers you get (0 or 1) is Bernoulli. The following month, n=1 again, and you once again have a Bernoulli r.v., this time with a different p. Same idea in the following months. Each and every time it's Bernoulli, just Bernoulli with differing p. If you're asking whether the sum of those Bernoulli random variables would have a binomial distribution, then no, no it wouldn't (since p changes from trial to trial).

  • @F91RPG
    @F91RPG 5 років тому

    Sorry although you said there is not too much difficulty, but I still don't understand why variance= p(1-p)

  • @TheAprilMendez
    @TheAprilMendez 12 років тому

    this is incredibly clear. Thank you!!

  • @sangmadewira4726
    @sangmadewira4726 28 днів тому

    Hold on, I dont understand why the variance is p(1-p), why is it the p of success times the p of failure?

    • @jbstatistics
      @jbstatistics  28 днів тому

      I derive the mean and variance of the Bernoulli here: ua-cam.com/video/bC6WIpRgMuc/v-deo.html&ab_channel=jbstatistics

    • @sangmadewira4726
      @sangmadewira4726 28 днів тому

      @jbstatistics holy cow what a fast response, thanks sir

  • @khalidmuhammed3058
    @khalidmuhammed3058 5 років тому

    Does it relate to logistic regression ?

  • @eryseayliid1535
    @eryseayliid1535 6 років тому

    Is the Bernoulli distribution the same as the "normal" distribution? It was asked in the sample exam but I wasn't able to find anything indicating or denying it :/
    Update: Normal distribution is in the topic of Continuous Random Variables, and not in Discrete Random Variables, so the 2 cannot be the same under any circumstances.

    • @jbstatistics
      @jbstatistics  6 років тому +1

      They are very, very different distributions. Pretty much the only thing they share in common is that they can both be labelled as probability distributions.

    • @eryseayliid1535
      @eryseayliid1535 6 років тому

      @@jbstatistics Thanks for the reply and the content, both are amazing! C:

  • @SaqibAlikhantanoli
    @SaqibAlikhantanoli 4 роки тому

    ​ @jbstatistics
    Can you please do a video on Weibull Distribution and Finding it Fitting Parameters (Weilbull Fitting).
    Thank you for great tutorials!

  • @sanjeevdubey8913
    @sanjeevdubey8913 7 років тому

    Awesome man. Keep it up.

    • @jbstatistics
      @jbstatistics  7 років тому +1

      Thanks! I'll get back to video production soon.

  • @sedatcapar
    @sedatcapar 4 роки тому

    Your lecture is good, but the example is wrong. if the variable X is the number of lawyers then what is the probability of 2 layers?

    • @jbstatistics
      @jbstatistics  4 роки тому +1

      The probability of getting two lawyers in a sample of one person is generally accepted as 0. The example is not wrong. X represents the number of lawyers in s sample of size 1. In other words, is the person a lawyer or not? A Bernoulli random variable results from a single trial of a yes/no 1/0 scenario.

    • @kl6544
      @kl6544 3 роки тому +2

      but what if the person is pregnant?

  • @tawseeftaher9109
    @tawseeftaher9109 2 роки тому +1

    resume 2:00

  • @mohammedsamsuddin5126
    @mohammedsamsuddin5126 6 років тому

    Great Video Keep it up

  • @ArijitBiswasdotcom
    @ArijitBiswasdotcom 6 років тому

    Hi, could you kindly clear my doubt? What if we pick more than 1 sample in a trial? Would that still follow the Bernoulli Distribution? Or are we allowed to only pick 1 sample per trial?

    • @jbstatistics
      @jbstatistics  6 років тому

      A Bernoulli random variable is one that takes on the possible values 0 and 1. If you have a situation where your random variable takes on values that are different from those, you don't have a Bernoulli random variable.

    • @ArijitBiswasdotcom
      @ArijitBiswasdotcom 6 років тому

      Thank you very much for answering! However I do have this doubt ... even if we pick 2 samples i.e. if we toss 2 coins, the possible values the coins can take on are 0 or 1. Is this a Bernoulli Distribution or some other? Could you kindly help me with this please?

    • @jbstatistics
      @jbstatistics  6 років тому

      You need to be a little more precise with the problem. You're tossing 2 coins. Coins aren't random variables on their own -- they are coins. What are you counting? What is your random variable? What values can that random variable take on?

    • @ArijitBiswasdotcom
      @ArijitBiswasdotcom 6 років тому

      Okay sure! Suppose I want to count the number of heads that comes up when I toss 5 coins in a single trial. So the random variable is - number of heads, the possible values that it can take on are H or T.
      So what would be the distribution of the number of heads in this case? Would it be Bernoulli still? Thank you in advance for your help!

    • @jbstatistics
      @jbstatistics  6 років тому

      If you toss 5 coins and count up the number of heads, then the possible values of that random variable are 0, 1, 2, 3, 4, 5. The possible values of the random variable are not restricted to 0 and 1, so it's not a Bernoulli random variable. If the coin tosses are independent with a constant probability of success, then the number of heads follows a binomial distribution. (A binomial distribution with n = 1 is a Bernoulli distribution.)

  • @evanv2258
    @evanv2258 4 роки тому

    college would be much more productive if all professors taught like you do :)

  • @TarunArora01
    @TarunArora01 4 роки тому

    I came here to get my queries solved but seems like they have been multiplied now :'D

  • @thanojishing534
    @thanojishing534 6 років тому

    power of 0=1
    so p(x=0)=(1/200)power 0.(1-1/200)power 0=0?sdnt it be 0?
    how it is 199/200?
    please explain in detail sir

    • @jbstatistics
      @jbstatistics  6 років тому

      P(X=0) = (1/200)^0(1-1/200)^(1-0) = 199/200.

    • @thanojishing534
      @thanojishing534 6 років тому

      o got ya... i missed (1-1/200)^(1-0)...
      thank you for responding

  • @pubgdynamodecks4927
    @pubgdynamodecks4927 7 років тому

    cud these be used for simulation and modelling??

    • @jbstatistics
      @jbstatistics  7 років тому

      Sure, depending on what you are simulating and modelling :)

  • @giliniieriop5700
    @giliniieriop5700 6 років тому

    Very helpful! Thank you!

  • @Rizz-hu4jq
    @Rizz-hu4jq 4 роки тому

    thanks sir ....it helps a lot

  • @probono2876
    @probono2876 8 років тому

    Great Stuff, many thanks !!!

    • @johnn8759
      @johnn8759 7 років тому

      pro bono You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @たかはしいつき-f7l
    @たかはしいつき-f7l Рік тому

    What if its like x=0 P(x)= 2000

    • @jbstatistics
      @jbstatistics  Рік тому

      I don't know what that means. The probabilities must lie between 0 and 1.

    • @たかはしいつき-f7l
      @たかはしいつき-f7l Рік тому

      @@jbstatistics yeah that one is not Bernoulli hahahah

  • @thabangkhoetha6978
    @thabangkhoetha6978 3 роки тому

    Wow I always ask myself what's the point and what are we rying to find out and i got the answer here

  • @godsavebulusdul9648
    @godsavebulusdul9648 3 роки тому

    this is awesome

  • @shrimatkapoor2200
    @shrimatkapoor2200 6 років тому

    Why do they teach the Bernoulli distribution if we can just learn about the Binomial distribution directly

  • @Dom-fx4kt
    @Dom-fx4kt 4 роки тому

    Brilliant.

  • @pramishprakash
    @pramishprakash Рік тому +1

    Thank you sir....

  • @deginettilahun
    @deginettilahun Рік тому +1

    very good

  • @siyuwang1928
    @siyuwang1928 5 років тому

    you saved my gpa

  • @Sam91
    @Sam91 8 років тому

    well explained,
    Thankyou. (:

    • @johnn8759
      @johnn8759 7 років тому

      Shiv Aditya Mishra You can find detailed information, formulas and calculators for "Bernoulli distribution" on trignosource - "trignosource.com/bernoulli%20distribution.html"

  • @drallisimo34
    @drallisimo34 9 років тому

    cool stuff!!!

  • @backagain-forgive
    @backagain-forgive 2 роки тому

    Thank you

  • @muhammadwaseem2304
    @muhammadwaseem2304 4 роки тому

    Thank you🙂

  • @Nishkarshnagle
    @Nishkarshnagle 6 років тому +1

    Man who disliked this video,, man

  • @EbenezerMandala
    @EbenezerMandala 2 місяці тому

    thanks sir

  • @benjaminli3808
    @benjaminli3808 3 роки тому

    The Patrickjmt of Statistics n_n

  • @ericphilip
    @ericphilip 4 роки тому

    Your voice!!

  • @Puhazhenthi
    @Puhazhenthi Рік тому

  • @dishaghatak3732
    @dishaghatak3732 5 років тому

    i love you

  • @yash3842
    @yash3842 7 років тому

    this is quite sad

  • @muhnnd2168
    @muhnnd2168 Рік тому

    omg

  • @kevinloones5395
    @kevinloones5395 5 років тому