Complex Analysis: Jordan's Lemma

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 19

  • @riazurrahman2199
    @riazurrahman2199 7 днів тому

    Nice video. Very knowledgeable. Good style of taeching.

  • @jackmoffatt2499
    @jackmoffatt2499 4 роки тому +6

    Really good and clear explanation. Much appreciated :)

    • @qncubed3
      @qncubed3  4 роки тому +1

      Thanks! Glad you found it useful.

  • @prabalbaishya6179
    @prabalbaishya6179 3 роки тому +4

    Nice! Also I think we could have used the fact that the exponential decay function converges extremely rapidly and when it is with some arbitrary function (which doesn't diverge very badly for example like e^z²) the limit as the independent variable approaches ∞ is 0. Here in our proof we have f(z) which we have restricted to as a rational function and I think there is a theorem which states that we can apply the limit, even before evaluating the integral. So we see that whatever divergence the linear term 'R' and |f(z)| produces is killed by the strong convergence of the e^-(aRsint) and as t lies between 0 and π so sint is always >0. So we can conclude that as R gets bigger and bigger the integral goes to 0. I might have done some mistakes while explaining as I have just started out complex analysis. Also your videos are just awesome for me!

  • @academicstuff548
    @academicstuff548 Рік тому +1

    Thanks for such brilliant videos.

  • @ravitejassu
    @ravitejassu 5 років тому +3

    Excellent explanation

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +1

    *Long time no see!!*
    *I'm waiting for your next video*

  • @abcdef2069
    @abcdef2069 Рік тому

    at 18:35 what if a =0 then aR = undetermined, ....whenever you are integrating a big semi circle R....but most com integrals dont have exp(iaz)

    • @TomasshaguaT
      @TomasshaguaT 4 місяці тому

      Although exp(iaz), isn’t common, it could be transformed into cos(az)-isin(az) through Euler’s law. Since you can separate the real and imaginary part of the integral, Jordan’s lemma is associated with integrating f(x)sin(ax) and f(x)cos(as), which are quite common.

  • @lucasfranco1758
    @lucasfranco1758 8 місяців тому

    Could you move the limit as R goes to infinity inside of the integral instead of using an inequality?

  • @DargiShameer
    @DargiShameer 4 роки тому +1

    Channel Subscribed 😍😍😍

  • @juniorcyans2988
    @juniorcyans2988 Рік тому

    I wish you could have do some examples to show how to apply the theorem. That would be more helpful. Anyways, thank you very much!

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому

    Hello Dear *QN3* .
    I Have a request, please speak about *Bessel functions* too.
    Thank you

  • @stringsam
    @stringsam 5 років тому +2

    good stuff :)

  • @jieunboy
    @jieunboy 2 роки тому

    Amazing thx

  • @fordtimelord8673
    @fordtimelord8673 2 роки тому

    Subscribed

  • @jonahlehner3855
    @jonahlehner3855 4 роки тому

    Amazing explanation