Complex Analysis: Integral of 1/(x^n+1) feat. pizza contour

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ •

  • @qncubed3
    @qncubed3  2 роки тому +11

    Note: Typo at 3:55 should be an element symbol instead of equality ... silly me

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +36

    Without any doubt:
    You're *The King Of Complex analysis* on UA-cam.
    Please continue this playlist.
    Thank you 💖

    • @birdbeakbeardneck3617
      @birdbeakbeardneck3617 10 місяців тому +1

      math505 is cool too

    • @Caturiya
      @Caturiya 4 місяці тому

      HE JUST WANTED TO GIVE AN EXERCISE IN COMPLEX ANANYSIS FOR THERE ARE MUCH MORE SIMPLER WAYS TO SOLVE ua-cam.com/video/bshl5HqiAYA/v-deo.html

  • @jackfitzgerald7231
    @jackfitzgerald7231 2 роки тому +34

    He sorta looks like Jacob Collier...

  • @davidblauyoutube
    @davidblauyoutube Рік тому +11

    When I first did this integral and got the right answer, I knew finally that I really understood complex analysis.

    • @darcash1738
      @darcash1738 11 місяців тому

      I know nothing about it but I became interested in it rn when I saw him use it on an integral that I thought could only cleanly be done w/Feynman’s technique. Would you say if I were to fully learn all concepts used in this video(and ofc be able to replicate em in other problems), i would have learned the essence of complex analysis? Also, what would you describe the point of complex analysis now that you’ve become well-versed in it 😅 based on how it sounds, is it like a deep dive into the utility of the complex plane for solving problems?

  • @mohamedkhoulali7267
    @mohamedkhoulali7267 2 роки тому +5

    this channel is so f underrated ! .. the best on complex analysis thank you

    • @azzteke
      @azzteke 2 роки тому

      underrated by whom please?

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +9

    *Happy first contour integral with chalk board*
    Yeah, I watched a whiteboard version of it before, but with some difficulty. But this one is great, in all aspects.
    And ...
    Please when you are busy, at least make short videos.
    Thank you so much dear *QN³* ❤️

  • @Decrupt
    @Decrupt 2 роки тому +6

    Blackboard videos are noice.

  • @ryanblais6208
    @ryanblais6208 2 роки тому +1

    Thanks for this great video and explanation. Just a question, at 7:16, should there be two or three poles in the lower right quadrant (positive Real, negative Imaginary)?

    • @qncubed3
      @qncubed3  2 роки тому +1

      It doesn't matter since this is only a rough sketch of where the poles could be. Depending on the value of n, the number and position of the poles will be entirely changed. The only pole that we are concerned about is the first one.

    • @ryanblais6208
      @ryanblais6208 2 роки тому

      @@qncubed3 ah ok, thank you!

    • @javiergilvidal1558
      @javiergilvidal1558 Рік тому

      @@qncubed3 It is not at all obvious, though nonetheless true, that the integral value remains the same if the pizza slice includes the first two nth-roots of (-1), or the first three, .... or in fact all of them, in which case you have the whole pizza minus a slice with no roots in its interior. Proving that the integral does not depend on how many residues you trap inside your region of integration would be a great exercise. I did it for the first two, and the result is far from obvious until the very end, when a magical simplification comes to save you in the nick of time! Will try to find the general answer tomorrow.

  • @Circuito28
    @Circuito28 Рік тому +1

    A question: residue method can only be used to calculate definite or improper integrals but not for indefinite in order to obtain only the primitive?

  • @seegeeaye
    @seegeeaye 2 роки тому

    great job!

  • @ianmoog123
    @ianmoog123 2 роки тому

    wow this is great!

  • @laurimynttinen6009
    @laurimynttinen6009 2 роки тому +2

    Can you make a video explaining contour integrals?

  • @weselise2489
    @weselise2489 6 місяців тому

    you saved me thank you

  • @nuclearrambo3167
    @nuclearrambo3167 4 місяці тому

    nice one

  • @itisajem8645
    @itisajem8645 7 місяців тому

    Interesting the result looks like the reflection formula for the gamma function but with 1/n

  • @rayandy2460
    @rayandy2460 Рік тому

    Greattttttt video! However, can n be non-integer?

  • @akirakato1293
    @akirakato1293 Місяць тому

    the final result looks extremely close to euler reflection formula

  • @bleaks218
    @bleaks218 8 місяців тому

    An interesting, alternative form for the final answer:
    I = (1/n) * Γ(1/n) * Γ(1-1/n)
    I = Γ(1+1/n) * Γ(1-1/n)
    I = B(1+1/n, 1-1/n)

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +1

    Finalllllly ......

  • @achenejegodwin6638
    @achenejegodwin6638 2 роки тому

    Thank you for that wonderful piece of delivery, pls, can you help when n=5 , I.e f(x) = 1/ x^5 + 1

  • @calebkan7350
    @calebkan7350 2 роки тому

    all u need is the beta function then put into gamma form and use euler's reflection formula

  • @Nolord_
    @Nolord_ 2 роки тому

    That's pretty nice. Would it be possible to generalize this result for R=1?

  • @Pommes736
    @Pommes736 2 роки тому +1

    Is there a way to compute the indefinite integral of this with complex analysis or do you have to have bounds?

    • @qncubed3
      @qncubed3  2 роки тому

      I'm not sure if contour integration can be used to evaluate indefinite integrals. However, here's a related post I found :)
      math.stackexchange.com/questions/1999869/evaluate-int-frac11xndx-for-n-in-mathbb-r

    • @Pommes736
      @Pommes736 2 роки тому

      @@qncubed3 I'm not interested in this school integral per se. I wanna know if it's possible in general for any function without any bounds.

    • @davidraveh5966
      @davidraveh5966 Рік тому

      @@Pommes736 If you want to gain intuition for things like this, use software to numerically solve your integrals for different bounds; this will inform you of the answer immediately, although to prove that they are equivalent may be difficult.

    • @Pommes736
      @Pommes736 Рік тому

      @@davidraveh5966 Oh you didn't understand my question. I can solve these integrals without problem, my question was if I can use THIS METHOD for INDEFINITE integrals.

  • @lambda2693
    @lambda2693 2 роки тому +1

    There’s actually a better method divide the denominator and numerator with x^n and then apply partial fraction and then resolve the contour

  • @bonelesspizza6311
    @bonelesspizza6311 8 місяців тому

    But why are you allowed to choose a contour that's only around a single pole? Why not choose a contour that encloses 2 poles? How diff would the answer be?

    • @qncubed3
      @qncubed3  8 місяців тому

      It is possible, but then you would have to calculate two residues

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому

    We are waiting .....
    🧐 It's me, looking at screen, for your notification 🧐

    • @qncubed3
      @qncubed3  2 роки тому +1

      Videos coming back by the end of this week :)

  • @holyshit922
    @holyshit922 Рік тому

    I would probably calculate it with Beta function then change it to Gamma function , finally i would finish it with reflection formula for Gamma

  • @TheHellBoy05
    @TheHellBoy05 Рік тому

    A much simpler aproach, about how i solved it. Substitute x=t^1/n
    This makes dx=t^((1/n)-1)dt
    The given function resolves to the form of beta function. Which later simplifies into eulers reflection formula

  • @Thor-yk4cr
    @Thor-yk4cr 2 роки тому

    After a such long time.......
    :D

  • @ayman1515
    @ayman1515 Рік тому

    What if we replaced n by 5, how will the integfation be, and what will the answer be??
    Do i just replace n by 5 in all the steps of the solution and in the final answer or what??

    • @harisserdarevic4913
      @harisserdarevic4913 Рік тому

      uh yeah thats what it means to solve something for a general variable n. it holds for any n>1 so you don't have to redo any work

    • @ayman1515
      @ayman1515 Рік тому

      ​@@harisserdarevic4913 try it for n=5 using this method and try it using decompoaition and if you reached same answer then it is correct. I think for odd power, it has another way of solving

  • @dbf72829
    @dbf72829 Рік тому

    Bad boy you don't clean up your own mess 😤

  • @juniorcyans2988
    @juniorcyans2988 Рік тому

    I wish you were my classmate!

  • @niom9446
    @niom9446 8 місяців тому

    this video looks like asian flammable maths

  • @ianmoog123
    @ianmoog123 2 роки тому

    lovely accent as well!

    • @qncubed3
      @qncubed3  2 роки тому +2

      cheers, from straya mate

    • @ianmoog123
      @ianmoog123 2 роки тому

      lovely country

    • @ianmoog123
      @ianmoog123 2 роки тому

      I thought you were english or something by the way you dressed lol

  • @the_nuwarrior
    @the_nuwarrior 2 роки тому

    Good

  • @hajsaifi3842
    @hajsaifi3842 9 місяців тому

    Bêta fonction mène à la même résultat

  • @hajsaifi3842
    @hajsaifi3842 5 місяців тому

    Je crois que bêta mene a la même résultat

  • @Hadeeqah
    @Hadeeqah 2 роки тому

    Blackboard videos

  • @THEDIVINEMISCARRIAGE
    @THEDIVINEMISCARRIAGE Рік тому

    P I Z Z A