Parametric and symmetric equations of the line (KristaKingMath)

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 83

  • @Micchapin
    @Micchapin 10 років тому +3

    Krista, you were a really big reason as to why I got a good grade in Calculus 2, now taking Multivariable Calc, I have a feeling you're gonna help me a lot again. Thank you for what you do!

    • @kristakingmath
      @kristakingmath  10 років тому

      You're welcome! I'm so honored to be able to help!

  • @georgetoma5608
    @georgetoma5608 9 років тому +29

    At 4:18 - 4:19 "we're going to pull out a J"
    Is that in anticipation for 4:20?

  • @maximelegrand3705
    @maximelegrand3705 10 років тому +3

    Perfect timing! Im actually learning things about parametric lines, plans, and all things like that, and you are posting them so nice!
    A thank from France ;) I also shared your channel to my class haha!

  • @ridhima76
    @ridhima76 2 роки тому

    almost 8 years later and this video clarified my doubt tysm

  • @AlexanderMcNulty92
    @AlexanderMcNulty92 6 років тому

    Whenever I need a someone to go the extra mile in explaining 'why' I come to your channel.

  • @slinkpot8798
    @slinkpot8798 Рік тому

    This video is wildly helpful. Thank you very much.

  • @edmund3504
    @edmund3504 5 років тому +7

    lol, I needed help on symmetric equations and this is the exact homework problem I was stuck on

  • @hawkeye5584
    @hawkeye5584 10 років тому +1

    Thank you so much! If I can understand how to do the problem I can understand the subject but understanding how to do it is the hardest part. THANK YOU!

  • @gavindolechek8543
    @gavindolechek8543 3 роки тому +1

    Finna pass my exam thanks to this channel

  • @noahetan4766
    @noahetan4766 9 років тому +2

    i really appreciate what you do. thank you. thank you from deep within my heart

  • @amiraemamafify7421
    @amiraemamafify7421 7 років тому +3

    Thank you for this amazing Explain 💚

  • @dariennesee5928
    @dariennesee5928 2 роки тому

    Wonderful video! Thank you for giving such a clear explanation!

  • @amna2631
    @amna2631 6 років тому

    If are asked to parameterise the line segment joining points (0,1/2,1) and (2,1,-3). Then restriction values of parameter t will be diff if we pick the other point .

  • @MRAXELGRINDER
    @MRAXELGRINDER 5 років тому +1

    Awesome lesson

  • @gocelinedion
    @gocelinedion 5 років тому

    You just made my day. I finally understand it!

  • @Peter-bg1ku
    @Peter-bg1ku 5 років тому

    Thanks a lot. Saved my life

    • @kristakingmath
      @kristakingmath  5 років тому +1

      You're welcome, Peter! I'm so glad it helped! :)

  • @劉信亨-u2x
    @劉信亨-u2x 4 роки тому

    at 2:26 why we chose point use the r(0) point , can we use in the r(0) points , let me so confuse, please explain thanks

  • @aaiyeeshamostak5096
    @aaiyeeshamostak5096 6 років тому +1

    Correct me if I am wrong, as far I know, X - 2 is not an equation, it's an expression. I also did not get why we are counting it in symmetric equation. Would be grateful if you could help me to get a better insight.

  • @AlexBianco100
    @AlexBianco100 10 років тому +1

    2:23 Why doesn't it matter which of the two points you pick? You seem to reach two different sets of parametric equations...

  • @solarcatt
    @solarcatt 7 років тому +2

    This was so helpful, thank you so very much! Your explanations were hella thorough and I find myself understanding the processes more clearly. One question, though! Our teacher introduced the vector equation form to look like r = (xo, yo) + td. The form you have includes the i, j, and k details of a vector; are both of these forms correct for the vector eq?

    • @kristakingmath
      @kristakingmath  7 років тому +1

      Yes, they're both correct, just in different forms. :)

    • @solarcatt
      @solarcatt 7 років тому

      Krista King Okay, thank you so much!

    • @slipknnnot
      @slipknnnot 7 років тому

      That's hella lit fam

  • @markjohnson7839
    @markjohnson7839 10 років тому

    You’re the bomb girl. Thanks for all of these great videos.

  • @OrionAlvarado
    @OrionAlvarado 9 років тому

    Hi Krista, please correct me if I am wrong but,
    I thought when finding the equation of a line R = Ro + Vt
    Where: V is a vector perpendicular to the plane?
    Thus having to take the cross product
    Thanks

    • @karanveercheema2975
      @karanveercheema2975 2 роки тому

      v isnt a vector perpendicular to the plane, its a vector that is parallel to the line we are trying to find

  • @KabooM1067
    @KabooM1067 10 років тому

    Oh but that doesn't mean your explaining wasn't great. :D
    I love the style of the chalk and the blackboard and your clear voice and accent. I can pass my test in peace now, thank you!

  • @thememesarealive9813
    @thememesarealive9813 2 роки тому

    thank you for explaining symmetric equations! Calc 3 teacher did not mention them and they are on my homework :(

  • @Max_Le_Groom
    @Max_Le_Groom 3 роки тому

    Why do You separate x-2 from the other two with a comma, it looks messy.

  • @MarkNealJr
    @MarkNealJr 7 років тому

    What do we do if the associated direction number is 0? I have y = 1 and I'm not sure what to do...

    • @MarkNealJr
      @MarkNealJr 7 років тому

      Nvm! You're supposed to set the other two equal to eachother and write what the one with 0t equals.

  • @sharonwanjiku77
    @sharonwanjiku77 2 роки тому

    Superb .... thank you 😘

  • @lachristechnologies7639
    @lachristechnologies7639 5 років тому

    Please what software did u use. I like the background color n the whitechalk

  • @kyccchk9268
    @kyccchk9268 4 роки тому

    Love it!thank you sososo muchhhh

    • @kristakingmath
      @kristakingmath  4 роки тому

      You're welcome, Valerie, I'm so glad you liked it! :D

  • @lightryuzaki3974
    @lightryuzaki3974 6 років тому

    U deserve million of sub!...

  • @TheDiederikdehaan
    @TheDiederikdehaan 8 років тому

    are you sure about the second set of symmetric equations, i believe you're dividing by the x_0 component instead of a.
    Since the directional vector v = doesn't change (still the same line), but the point from which you're looking IS different namely r_0 = . Or am I mistaken? Bit confusing the last bit, can someone look into that part for me please? Thank you, kind regards and a happy 2017 everyone

  • @vernsalgorithm4903
    @vernsalgorithm4903 10 років тому

    Great explanation

  • @krustykrabbbbb
    @krustykrabbbbb 10 місяців тому

    Thank you so much for this

  • @salazarslytherin36
    @salazarslytherin36 5 років тому

    your hand writing on pc is better than my hand writing on a page !!!

  • @mathlover2299
    @mathlover2299 8 років тому +1

    Thank you very much.

  • @yashjain1492
    @yashjain1492 4 роки тому

    Understood everything 👍!

  • @sandeshpereira761
    @sandeshpereira761 10 років тому

    YOU THE BEST!!!! woop woop

  • @wavyks2159
    @wavyks2159 5 років тому

    Thank you!

  • @sterrenschooldeklimboom900
    @sterrenschooldeklimboom900 7 років тому

    To find the SE you can simply solve the PE for t.

  • @izzatirifai2546
    @izzatirifai2546 6 років тому +1

    Is it fine if we take the first point (0, 1/2,1) instead of the sec point and compare it with the vector?

  • @lxovikeizer9220
    @lxovikeizer9220 5 років тому

    But If gave us vector only , what we gonna do ?

  • @piglet2548
    @piglet2548 5 років тому

    How is x-2 an equation???

  • @xiaoxunsun4661
    @xiaoxunsun4661 4 роки тому

    That's what I want!

  • @malleharana8326
    @malleharana8326 10 років тому

    Thank you! You are a life saver

  • @slideIND
    @slideIND 4 роки тому

    thankyou!

  • @imranmirza1385
    @imranmirza1385 8 років тому

    Thank You so much
    u saved me from getting F in CAL

  • @jobayerrifad544
    @jobayerrifad544 8 років тому

    thnk u..ur voice is so sweet btw.....

  • @mateo61323
    @mateo61323 6 років тому

    "of the line the line"?

  • @liverpooler1997
    @liverpooler1997 9 років тому

    are you a teacher?

  • @joelvides9223
    @joelvides9223 3 роки тому

    Just easy

  • @justrinat2207
    @justrinat2207 5 років тому

    All you are doing when getting your symmetric equations is isolating the parameter; since the parameter is equal to any of the individual component expressions, they must all equal each other. Don't know why you took your roundabout way of explaining.

  • @dotdashYTP
    @dotdashYTP 6 років тому

    L
    O
    V
    E