Calculus 1 Lecture 3.3: The First Derivative Test for Increasing and Decreasing

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 77

  • @eliasrodriguez5054
    @eliasrodriguez5054 2 роки тому +47

    Man is both mentally and physically strong. That's someone to look up to. Great lesson and explanation

  • @Rahgnar2006
    @Rahgnar2006 10 років тому +68

    "no.. oh no, I'd burn your paper for that... hand ya back a staple!"
    This dude is too much hahaha

  • @educatedish2595
    @educatedish2595 8 років тому +116

    This guys amazing. Wherever he is teaching, they better be paying him good !

  • @jermainewells8506
    @jermainewells8506 3 роки тому +24

    I can't even begin telling you how these videos turned Calculus 1 around for me. My first test was a 60 which was the wake up call. Since then I've found these videos and haven't scored below a 90 on each exam.

  • @angelinacabrera5576
    @angelinacabrera5576 8 років тому +73

    I shall quit physical school and just watch Superman's videos. I hate math righ now, but when I understand it I love it. LOVE HATE relationship. Cal1 is not my friend and neither is cal 2, 3 and dif Q. I look forward to taking those classes -______-

  • @nikkim.2042
    @nikkim.2042 8 років тому +30

    This was so helpful. Thank you! My prof just rushes through things, never explains what or why he does things and just assumes we know how to simplify EVERYTHING. I wish he was this clear!

  • @nicolevafiadis885
    @nicolevafiadis885 5 років тому +16

    Professor Leonard is really out here doing God's work

  • @funmaster5249
    @funmaster5249 5 років тому +23

    I think the most impressive thing here is how he memorized the mirrored function and uses those hand gestures to make it more clear for the students. If you think about it from his side its really impressive how hes so fluid with it. He has to flip the y axis on any graph he uses a hand gesture for.

  • @SimplyGrouchy
    @SimplyGrouchy 9 років тому +80

    Wish my professor was this clear helped a lot thanks

    • @turkishgorilla2651
      @turkishgorilla2651 9 років тому

      +SimplyGrouch Same

    • @SlazeM7
      @SlazeM7 4 роки тому +1

      Stop being a weeb, things will become much clearer.

    • @fratakkaya667
      @fratakkaya667 3 роки тому

      @@SlazeM7 HAHAHAHAHAHAHAA

  • @umangsaini8559
    @umangsaini8559 Рік тому +3

    Nobody talking abt Prof.'s humour👑

  • @michaelclendenon2921
    @michaelclendenon2921 8 років тому +9

    Thank you for going the extra step and posting these videos. I really appreciate your style and approach, it is very refreshing.
    Best of luck
    Casey

  • @shadabzahra6274
    @shadabzahra6274 4 роки тому +5

    I wish you were my actual teacher but still I am thankful to god to have access to this

  • @omarmorales3828
    @omarmorales3828 8 років тому +6

    This awesome. Teaches better than my actual professor. Thanks

  • @santiagogarcia8748
    @santiagogarcia8748 6 років тому +6

    your videos are very straight forward . thank you for sharing the videos .

  • @hallandouvte4778
    @hallandouvte4778 3 роки тому +4

    He's simply the best.

  • @SFYN..
    @SFYN.. 5 років тому +20

    1:15 I'll burn your paper and hand you back the staple... LOL

  • @OMAR8635
    @OMAR8635 9 років тому +4

    Super helpful for my Ap Calc class, thanks

  • @dario3334
    @dario3334 7 років тому +3

    thank you for uploading these videos they help a lot

  • @sameterdogan1820
    @sameterdogan1820 5 років тому +3

    Hor thing and lesson was good :)Thanks superprofessor

  • @bernadetteg.tharngan4041
    @bernadetteg.tharngan4041 6 років тому +4

    wish I found this professor earlier. My current one is just making calculus way more complicated than this.

  • @awashaaalkaabi2334
    @awashaaalkaabi2334 7 років тому +1

    ممتاز هالدكتور

  • @DanT-iu6oc
    @DanT-iu6oc 5 років тому +2

    this man is a goddamn american hero

  • @NormaNsNs
    @NormaNsNs 7 років тому +2

    i took x^(2/3) as a factor and come up with the same answer on 18:33

  • @cooltier6174
    @cooltier6174 4 роки тому +2

    @21:42 if x = 0 doesn’t it mean that graph has a vertical tangent ?

    • @moratasa9741
      @moratasa9741 3 роки тому

      yes and it can also possibly change signs (slope from decreasing to increasing and vise versa) there

  • @notdead5458
    @notdead5458 7 років тому +2

    THANK YOU PROFESSOR!

  • @johnlivingston6986
    @johnlivingston6986 Рік тому +1

    Professor Leonard drop the workout split

  • @mazan7824
    @mazan7824 8 років тому +2

    so great!

  • @javanshirazizov1991
    @javanshirazizov1991 5 років тому +1

    at 4:21 function must be continuous at critical points (where f' is zero or not defined). Your rule is true only for differentiable functions. You restrict the class of functions.

    • @nicatismaylov4054
      @nicatismaylov4054 5 років тому +2

      If a function is differentiable, the function MUST be continuous. Existing critical points means that the function has a derivative or is differentiable. Eventually, you are not true.

  • @spurti
    @spurti 2 роки тому +1

    But at 22:39 cube Root of x should not be equal to zero.

  • @binoschebarrett
    @binoschebarrett 9 років тому +4

    how did you pull out X ^-1/3 from X^2/3 and are left with an x?

    • @roadtoad3484
      @roadtoad3484 7 років тому

      Thank you! that really helped.

  • @nishagc9753
    @nishagc9753 9 років тому +2

    hey, i wanted u to do deltan and epsilon form limit defination,
    please

  • @Omair-d3g
    @Omair-d3g 7 місяців тому +2

    I wish my teacher was also jacked maybe i would have focused more

  • @richardassal7788
    @richardassal7788 11 місяців тому +1

    for the function f(x) = 3x^(5/3) - 5x^(2/3): We determined in your video that the slope is undefined at x=0. However the original function is continuous at x=0. What does this mean?

    • @drw3043
      @drw3043 8 місяців тому

      If you look at the graph of the function, you can see that the slope is becoming vertical as we approach a sharp turn at x=0 . The slope of a vertical line is undefined, so that is why the first derivative is undefined at x=0 even though the function is continuous there. (The sharp turn also makes the derivative not exist at that point, this function just happens to have both a sharp turn and a vertical slope at the same point)

  • @masterofmath449
    @masterofmath449 8 років тому +2

    @ 9:23 Professor why are you flipping me off? lol

  • @garfyy427
    @garfyy427 6 років тому +1

    It's lucky for not having to take this test in the class :D

  • @jacobm7026
    @jacobm7026 6 років тому +4

    Starting around 17 minutes...I have a problem with him assigning a positive value to points with negative values under a radical. Seems like positive/imaginary for anything less than 0

    • @actuary32174
      @actuary32174 4 роки тому

      This concerns me too. I agree with your point.

    • @moratasa9741
      @moratasa9741 3 роки тому +5

      @@actuary32174 idk if I misunderstood you or not but if you mean the radical in the second question its odd radical so it's legal to put negatives there

    • @heet69690
      @heet69690 Рік тому

      ​@@moratasa9741ah that makes sense. Thanks

    • @drw3043
      @drw3043 8 місяців тому

      Try substituting -8. It's a cubed root not a square root, so the cubed root of -8 is -2. (Check that (-2)^3=-8). When you plug -8 into the numerator, you also get a negative answer. A negative numerator and a negative denominator give a positive final answer.

  • @Jasonasked1233
    @Jasonasked1233 2 роки тому +1

    How can f(x) = 3x^(5/3) - 15x^(2/3) be a function when it has sharp turns at f(0?

    • @drw3043
      @drw3043 8 місяців тому +2

      Functions are allowed to have sharp turns. The absolute value function f(x)=|x| is another example of a function that has a sharp turn at x=0. For the function in the lecture, there is a sharp turn at x=0 but the function is still continuous there. However if you look at the graph you can see that the slope gets steeper and steeper as we approach x=0. The slope becomes vertical, and the slope of a vertical line is undefined. Further, the slope is approaching positive infinity as we approach x=0 from the left, and the slope approaches negative infinity as we approach from the right. So even though the function is continuous at x=0, we see that the first derivative is undefined there so the function is not differentiable at x=0. That doesn't stop us from finding the derivative at the other points where it is defined.

  • @marlinheck
    @marlinheck 6 років тому

    May I have the ISBN code for the calc text you are using.

  • @elanurerdogan8586
    @elanurerdogan8586 2 роки тому +1

    thank youuu

  • @frankruscil680
    @frankruscil680 10 років тому +1

    How did you get the x^-1/3? How would 5^-1/3 * x = 5^2/3s?

    • @caseythefalcon81
      @caseythefalcon81 9 років тому +3

      Because x has an exponent of 1 therefore when factored it would be 1+-1/3=2/3 leaving it with 5^2/3

  • @TuanNguyen-yu7he
    @TuanNguyen-yu7he 8 років тому +1

    what edition is this Prof. Leonard? because i have edition 10th in my calculus and the chapters are different

  • @ayeshaarslan1381
    @ayeshaarslan1381 Рік тому +2

    bro why's that one kid always coughing in the back

  • @instaminox
    @instaminox 9 років тому +2

    here where Algebra is crutia and will not play with u! it you miss your critical numbers your answer will be in a critical condition and you will find yourself trying to catch up some points at the hospitals problems :D

  • @perezje23
    @perezje23 8 років тому

    Stupid question but is this the explanation for section 3.3 James Stewart 8th edition "how derivatives affect the slope of the graph"

  • @c1aniel
    @c1aniel 5 років тому +1

    my math teacher should kiss your shoes

  • @daphneblake4161
    @daphneblake4161 5 років тому

    Are these videos for first year university calculus?

    • @Peter_1986
      @Peter_1986 4 роки тому

      I think so, yes.
      I studied pretty much this exact content when I studied "Differential Calculus" on my first year in Engineering Physics.
      Then my final math course that year was "Multivariable Calculus", which is basically Calculus 3.

  • @vennenmin123
    @vennenmin123 7 років тому

    f(x)=4x+2/2x-3 (4x plus 2, over 2x minus 3). The (1st derivatives) f'(x)= -16/(2x-3)^2 (negative 16 over 2x minus 3 raise to the power of 2), and the f"(x)= 64/(2x-3)^3 When ask when is f'(x) is increasing or decreasing. How to compute when the numerator has no x value). In (second derivatives) f"(x), how to compute when f(x) is positive(conveks) or when it is negative (concave)? Can someone at least explain the logic behind it? Eventually youtube link if there is any.

  • @cate9541
    @cate9541 3 місяці тому

    My goat

  • @EldenEngineer
    @EldenEngineer 2 роки тому +1

    My fiancee also hates math.

  • @greenmask487
    @greenmask487 2 роки тому +3

    Bro forget the calculus how can I have his physique 💀

  • @جميلة-ك4ط
    @جميلة-ك4ط 5 років тому +2

    ينطي واهس يقرا 😂

  • @bateristicalan
    @bateristicalan 8 років тому

    16:10 am i the only one heard the fly?

  • @farhasyeda6799
    @farhasyeda6799 5 років тому

    2 to 3

  • @bigoshbomber
    @bigoshbomber 5 років тому +1

    I would die for you

  • @yonkamacho9842
    @yonkamacho9842 6 років тому +3

    He dabs at 24:37

  • @mathsguy-ul8nj
    @mathsguy-ul8nj Рік тому +1

    bruh wear a full shirt, your biceps are too distracting(in a good way(like a compliment, but like, bad for me))

  • @The_Angry_BeEconomist
    @The_Angry_BeEconomist 9 років тому +1

    lol @ how to find hors

  • @miraaziz5483
    @miraaziz5483 6 років тому

    lolllll