A RIDICULOUSLY AWESOME FRACTIONAL TRIGONOMETRIC INTEGRAL!!!

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 61

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +20

    BRO THIS WAS FREAKING INSANE! each move was so unexpected lol! thank you for reminding me that I skippped the infinite product chapter from my complex analysis book.

  • @jonsmith8579
    @jonsmith8579 Рік тому +21

    Thank you Maths 505 for solving the integrals

  • @mikecaetano
    @mikecaetano Рік тому +7

    Logging the product to obtain a series was a really nice touch.

    • @maths_505
      @maths_505  Рік тому +1

      Thanks. Playing around with infinite products often yields surprisingly beautiful results

  • @ЯрославБеляев-т5к

    Your channel is like a breath of fresh air for me)
    Thanks!😄

  • @martiribapons
    @martiribapons Рік тому +3

    Simply brilliant!!

  • @bhalchandraganeshbhatstude8290
    @bhalchandraganeshbhatstude8290 Рік тому +16

    69.420? You sir are the Shelon musky of calculus. I wrote jee in 2002. Got a 4200 rank which wasn’t good enough to go to any iits. But I get a ton of joy watching your videos. Hats off to you!

    • @maths_505
      @maths_505  Рік тому +5

      I figured I should use the fundamental constant of nice for a change😂

    • @arxalier2956
      @arxalier2956 Рік тому

      Sir I am also JEE aspirant, was 4200 rank below cutoff in 2002?

    • @bhalchandraganeshbhatstude8290
      @bhalchandraganeshbhatstude8290 Рік тому +1

      @@maths_505 I’d call it the bronze ration, if there isn’t one already

    • @bhalchandraganeshbhatstude8290
      @bhalchandraganeshbhatstude8290 Рік тому +2

      @@arxalier2956 I’m so sorry, I have been out of touch with jee for 20 years, this channel brings back those good memories. Back in 2000, you had to have a sub 4000 rank to get anywhere, even in ism dhanbad as it was called then. I lived very close to iit Mumbai, and you needed a sub 1500 rank to get in the integrated ms in civil engineering.😅. So I went to a local engg college called Spce, 2 yrs with infosys, and pgp mba from Iim ahd. Then I emigrated to USA, now a citizen after 12 yrs. I wish you well on the journey. Remember, when you get there, know where you came from!

    • @Aditya_196
      @Aditya_196 8 місяців тому

      Damn awesome bro 😎

  • @monikaherath7505
    @monikaherath7505 Рік тому +7

    OMG I almost did this myself except I made the mistake of thinking you could telescope it instantly (mistaking the initial k as a constant) getting pi/2 -1/2 ln2, although I felt intuitivey that it was wrong lol thanks for the proper solution I feel I'm improving just by watching your vids

  • @vicentepoblete6627
    @vicentepoblete6627 Рік тому +1

    brilliant example of the fractional part

  • @cristoduke8953
    @cristoduke8953 Рік тому +1

    Love these interesting integrals

  • @krishgarg2806
    @krishgarg2806 11 місяців тому

    I was able to get to the ln series by myself, and thats where I got stuck. amazing integral!

  • @slavinojunepri7648
    @slavinojunepri7648 Рік тому

    This is so cool, my goodness!

  • @Mephisto707
    @Mephisto707 Рік тому

    Beautiful result indeed!

  • @nickruffmath
    @nickruffmath Рік тому +9

    Great solution from start to finish! Loved the sinh result for log..reminds me of using the sin version and taking the logarithmic derivative to get a cotangent generating series for even values of the Zeta function.
    Your approach to the frac/floor makes me wonder if it generalizes. It seems like a good strategy to take the inverse function of whatever's under the floor operator, then run thru the integer inputs to that inverse function.

    • @maths_505
      @maths_505  Рік тому

      I thought the same while penning this down.

    • @immortalking.youtube
      @immortalking.youtube Рік тому

      @@maths_505 bro do there is any to evaluate this for every power of tanx

  • @fartoxedm5638
    @fartoxedm5638 Рік тому

    did pretty the same with the original remainder function and bunch of telescoping sums and limits, but yours looks much cleaner!

  • @hyperpsych6483
    @hyperpsych6483 Рік тому +4

    It took me a solid few seconds to realize why you chose that particular decimal 😂

  • @Maths_3.1415
    @Maths_3.1415 Рік тому +1

    Nice integrals bro 🎉

  • @antonyrodriguez5621
    @antonyrodriguez5621 Рік тому +2

    Cannot lie...need an integral a day now!

    • @maths_505
      @maths_505  Рік тому +2

      Inshallah. I try to upload everyday or atleast 5 videos a week.

  • @MrWael1970
    @MrWael1970 Рік тому

    Really Smart solution. Thank you.

  • @Noam_.Menashe
    @Noam_.Menashe Рік тому +2

    Alternatively for the sum you could have used the sums you got for cot(x), put in an imaginary x and integrated.

  • @nimrodkadish
    @nimrodkadish Рік тому

    So cool! Now do the same integral, just with the integrand being {cotx}, please

  • @cicik57
    @cicik57 Рік тому

    right it is standard strategy when you have floor function integral_, worth to remember

  • @光蛟程
    @光蛟程 Рік тому +1

    Quite enlightening !

  • @sagbansal
    @sagbansal Рік тому

    I am amazed

  • @palestinemorocco1920
    @palestinemorocco1920 Рік тому

    Amazing ❤

  • @suvosengupta4657
    @suvosengupta4657 Рік тому

    Thats some legit example for floor function

  • @achrafsaadali7459
    @achrafsaadali7459 Рік тому

    Can you try to make an axproximation for the catalan constant ?

  • @jonathandawson3091
    @jonathandawson3091 Рік тому

    Nice video. Had to speed up to 1.5x to follow.

  • @i1C4RU5
    @i1C4RU5 Рік тому

    What level of calculus is this? The most I've taken is AP Calc BC in high school, I'm wondering what this compares to that, because this ALMOST seems like something I could do, but there are a few things I don't recognize.

  • @neomooooo
    @neomooooo Рік тому

    Beautiful problem, elegant solution!
    I notice the numerical value is strikingly close to (1/2) ln(2 pi). Is this a coincidence?

    • @rafiihsanalfathin9479
      @rafiihsanalfathin9479 Рік тому +1

      If we subtract 1/2*ln(2pi) from the result and uses the sinhx expontential form, we will get the difference is pi-1/2*ln(e^(2pi)-1), the reason why they are so close is because if we remove -1 in the ln (which is very small difference because it is inside a logarithm), we get the difference is exactly 0 because pi-1/2*2pi=0

    • @maths_505
      @maths_505  Рік тому

      Noice

  • @roshanmadhav8876
    @roshanmadhav8876 Рік тому +1

    Can you solve integral of x^(1/x) from 0 to 1 ?

    • @maths_505
      @maths_505  Рік тому

      That's a Bernoulli integtal. I think Dr. Trefor already made a video on that.

    • @roshanmadhav8876
      @roshanmadhav8876 Рік тому

      Are you able to link the video having trouble finding it ?

    • @Maths_3.1415
      @Maths_3.1415 Рік тому

      @@roshanmadhav8876
      ua-cam.com/video/PxyK_Tsnz10/v-deo.html

    • @roshanmadhav8876
      @roshanmadhav8876 Рік тому

      So is there anyway to solve the integral x^(1/x) 0 to 1?

    • @maths_505
      @maths_505  Рік тому

      ua-cam.com/video/PxyK_Tsnz10/v-deo.html

  • @niom9446
    @niom9446 Рік тому

    crazy

  • @anestismoutafidis4575
    @anestismoutafidis4575 Рік тому

    Intg => π/4• dx

  • @sagbansal
    @sagbansal Рік тому

    can you solve e^(1/x) ln(x) Already wasted 3 hrs, got nothing.

    • @maths_505
      @maths_505  Рік тому

      I think you'll need a special function for that

  • @endersteph
    @endersteph Рік тому

    I do not understand your explanation for sin arctan x = x/sqrt(1+x²)

    • @gamersocks2741
      @gamersocks2741 Рік тому +1

      If tan(φ) = y, then this means that we can represent this as a right-angled triangle with height y and base 1 (remember that tan(x) = OPP/ADJ).
      From this we can conclude that the hypothenuse needs to have lenght L = sqrt(1²+y²) (from phytagorean theorem).
      Thus sin(φ) = sin(arctan(y))= OPP/HYP = y/sqrt(1+y²)

  • @trampoukisma4531
    @trampoukisma4531 Рік тому +1

    My dumbass thought it was smart to cancel the tanx💀💀💀

  • @alvarolouzi
    @alvarolouzi Рік тому +1

    69.420? Really? 😂

    • @maths_505
      @maths_505  Рік тому +1

      Whaaaat....
      Its nice 😂