A ridiculously awesome infinite power tower integral!!!

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 62

  • @maths_505
    @maths_505  Рік тому +28

    Correction: that's eta(2) at the end of the video. Apologies for the error.
    Here's the write up for the proof of the reduction formula I used in the video. Don't forget to follow for more awesome write ups on the gram:
    instagram.com/p/CtpX1B8tIcc/?igshid=MzRlODBiNWFlZA==

    • @oskarrask9413
      @oskarrask9413 Рік тому

      #hustle #neverstop :)

    • @maths_505
      @maths_505  Рік тому

      @@oskarrask9413 said it before and I'll say it again every f**king time😎😂

    • @mathalysisworld
      @mathalysisworld Рік тому

      Can you prove that integral of lambert W function from 0 to e is e-1 using its infinite series expansion?

  • @bogdancorobean9270
    @bogdancorobean9270 Рік тому +32

    I'm so glad people still start random math channels and find ways to provide cool content like this.

  • @ves7y775
    @ves7y775 Рік тому +29

    One word : wow

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому +40

    "We're going to invoke the Lambert W function".
    You're invoking my Vietnam flashbacks of all the implicit solutions to differential equations I could've solved with this function.
    6:17 I bet it involves Infinite Series.
    6:26 I'M DYING LOL

    • @maths_505
      @maths_505  Рік тому +5

      Bro this comment made my day😂

  • @jonathan3372
    @jonathan3372 Рік тому +42

    Ah yes, taking the series representation of Lambert W function out of the pocket like it's just another day... (got to confess I never knew there was one in the first place)

    • @maths_505
      @maths_505  Рік тому +18

      I've got deep pockets when it comes to series expansions 😎😂

    • @pureatheistic
      @pureatheistic Рік тому +4

      Well, what do you carry around in your math pocket on a regular day?

    • @maths_505
      @maths_505  Рік тому +15

      Series expansions, some nice contours to waltz across, the Leibniz rule in case I get bored, the gamma function, its cousin the beta function, its older brother the digamma function and in case the going gets tough, the whole family of polygamma functions and ofcourse some more special functions for special occasions.

    • @Aditya_196
      @Aditya_196 7 місяців тому +1

      😂😂 exactly like bro introduces it so casually I feel like it's normal for all the viewers to already know about it

    • @aravindakannank.s.
      @aravindakannank.s. Місяць тому +1

      @@Aditya_196 what a time
      it became normal of course after year(s)

  • @robertsandy3794
    @robertsandy3794 Рік тому +6

    Awesome result. You make it look so easy.
    Lambert W is one of BPRP's favourite functions

  • @ilmaio
    @ilmaio Рік тому +1

    Ouch. It hurted.

  • @alielhajj7769
    @alielhajj7769 Рік тому +4

    I kept saying wow every 10 seconds

  • @filipsperl
    @filipsperl Рік тому +1

    "Lambert is dead" 😂

  • @western977
    @western977 Рік тому +3

    Absolutely mind-blowing! 🤯
    I just recently discovered your channel. Now I enjoy every video. You are awesome! 😉

  • @gmnotyet
    @gmnotyet 10 місяців тому

    Infinite power, indeed.

  • @agrajyadav2951
    @agrajyadav2951 Рік тому +3

    Holy hell that's so cool, how the hell does pi sneak into these things!?

  • @valdodevirus
    @valdodevirus Рік тому

    Sorry for a dumb question, but IMHO (x^x) ^ (x^x) ^ ... equals to 1 when 0 < x

  • @MrWael1970
    @MrWael1970 Рік тому +1

    Wonderful, it is a magic 😊. Thank you

  • @ProfessorWumbo
    @ProfessorWumbo Рік тому

    Wow. This was beautiful.

  • @nicogehren6566
    @nicogehren6566 Рік тому +1

    very well done

  • @btd6vids
    @btd6vids Рік тому +1

    That was insane

  • @aravindakannank.s.
    @aravindakannank.s. Місяць тому

    i never knew that there was an series expansion for lambert w function and also the spell for it (just googled)

  • @hrishikeshaggrawal
    @hrishikeshaggrawal Рік тому +1

    soo... could you prove the sum in the bazel problem is exactly twice of this power tower?

  • @mikeoffthebox
    @mikeoffthebox Рік тому +2

    Lambert is dead - long live Lambert!

  • @lucidreconalt3229
    @lucidreconalt3229 Рік тому +5

    Yk what Kamaal I'm done this this I've been watching for months and I still cannot solve this differential equation. Can you PLEASE write out the letter u next to the letter n and show me how to differentiate between the 2 of them so that I can finally maybe integrate these techniques into my daily life because right now I CANNOT understand what in the hell you mean when u write lu(x)
    Anyway much love ❤ :)

    • @maths_505
      @maths_505  Рік тому +7

      Oh that's how we write the natural logarithm on my planet. Sorry I'm still getting accustomed to your earth writings😂

  • @grantofat6438
    @grantofat6438 Рік тому

    Doesn't the result depend on the value of x?

  • @CryToTheAngelz
    @CryToTheAngelz Рік тому +3

    Shouldn't that be eta(2) at the end?

    • @maths_505
      @maths_505  Рік тому +3

      Indeed it is. My apologies

  • @eduardoeller183
    @eduardoeller183 Рік тому

    Great video!!!

  • @Ash.bourne
    @Ash.bourne Рік тому

    Iam really onto being tricky as u in math , u got any advice or a source i can have the good explanations to what i seek in each genre of math ( like : series , integration , differentiation, and so on .... ) .

  • @aliaujla110
    @aliaujla110 8 місяців тому

    Suppose we remove upper & lower limits.

  • @romanvolotov
    @romanvolotov Рік тому

    so cool!

  • @zunaidparker
    @zunaidparker Рік тому +1

    Mind boggling that this even has a solution. Does this technique work for the clarification power tower x^x...?

    • @maths_505
      @maths_505  Рік тому +2

      Yeah it should.
      Only difference I see is getting W(-lnx) as the integrand. The series expansion and integration is then straight forward.

    • @zunaidparker
      @zunaidparker Рік тому

      *classic power tower. Damn swipe typing!

    • @maths_505
      @maths_505  Рік тому +2

      ​@@zunaidparker it's cool.
      Better than writing eta(1) right😂.
      Apologies for that....its been a pretty exhausting day

    • @oo_rf_oo8824
      @oo_rf_oo8824 Рік тому +1

      @@maths_505 isn't that .... exceeds the redius of convergence of the series expansion?

    • @ekxo1126
      @ekxo1126 Рік тому +1

      I think you have to pay a lot of attention to the convergence of the taylor series of the W function there

  • @padraiggluck2980
    @padraiggluck2980 Рік тому +1

    Why isn’t ln (x^x)^y = ln (x^xy) = xy ln(x)?

    • @maths_505
      @maths_505  Рік тому

      It is but the objective was to get an explicit form for y in terms of x so I only took the y down initially. However you can take the x down too and get the same result.

  • @sergten
    @sergten Рік тому

    Wow!!!

  • @nickruffmath
    @nickruffmath Рік тому

    Awesome

  • @Maths_3.1415
    @Maths_3.1415 Рік тому +2

    Where are you from?
    Aap kis desh se ho?

    • @maths_505
      @maths_505  Рік тому +2

      Apkey sath waley desh se bro.
      (This response was also generated by a mysterious AI)

    • @Maths_3.1415
      @Maths_3.1415 Рік тому +1

      ​@@maths_505 I cannot believe you speak hindi (my mother tongue)

    • @Maths_3.1415
      @Maths_3.1415 Рік тому +1

      I think you are from America because your accent is just like American's accent

    • @maths_505
      @maths_505  Рік тому +1

      @@Maths_3.1415 nah bro
      I'm Pakistani and in Lahore, Pakistan.

    • @Maths_3.1415
      @Maths_3.1415 Рік тому +1

      ​@@maths_505but your English is damn nice 😂

  • @karma_kun9833
    @karma_kun9833 Рік тому

    300 like

  • @friedrichhayek4862
    @friedrichhayek4862 Рік тому

    You should stop writting the n as u

  • @pureatheistic
    @pureatheistic Рік тому

    You proved your great with series, but i didnt see any proof of the first claim of being good with the ladies. Only that your some amount less good with the ladies as you are with series by your own word. I 0refer having as few assumptions in my proofs as possible, so....where the receipts?

  • @PotatoImaginator
    @PotatoImaginator Рік тому

    Very cool