Selecting a Rotation in a Factor Analysis using SPSS

Поділитися
Вставка
  • Опубліковано 6 січ 2025

КОМЕНТАРІ • 46

  • @simplifiedrecipespanindia
    @simplifiedrecipespanindia 3 місяці тому

    I can't thank you enough for this video. You are such a savior for understanding and interpreting SPSS software. Thank you! Dr. Todd Grande.

  • @truegrit4752
    @truegrit4752 5 років тому +4

    I learn so much more from you than I learn in my graduate level classes. Thanks for sharing!

  • @wimamaa9273
    @wimamaa9273 6 років тому +2

    This video, like many others on your channel, is a life-saver. Thank you!

  • @-yt5258
    @-yt5258 3 роки тому

    We may not see each other but your lessons are very helpful.
    My sincere respect
    LOVE from Odisha, India

  • @barrieahmed3233
    @barrieahmed3233 5 років тому

    I'm lucky to get your video explanations on the rotation in factor analysis... thank you very much, Dr. Todd... this was very much helpful.

  • @2736492821
    @2736492821 6 років тому

    This is gold! I got some introduction on general PCA and it was missing in rotation. This tutorial helped me grasp the concept of rotation and I will be ready to apply it in my analyses, thanks!

  • @thomasstarr6433
    @thomasstarr6433 8 років тому +13

    Two questions: First where does the absolute of .32 come from regarding correlation values? Second, for the Oblique rotation you examined the Component Correlation table and for the Orthogonal Rotation you examined the Rotated Component Matrix table, so, why the different tables?

  • @stratpap637
    @stratpap637 Рік тому

    Very nice explanation! Thank you Dr. Grande

  • @khoiandhannah4362
    @khoiandhannah4362 5 років тому +1

    You are always the best! keep going Dr. Grande!

  • @javisfernandes9468
    @javisfernandes9468 4 роки тому +1

    THANK YOU SO MUCH FOR BEING SUCH A BEAUTIFUL HUMAN BEING!!! THIS REALLY HELPED ME!!!

  • @Seanv12345
    @Seanv12345 4 роки тому +1

    This is really well done. Thank you.

  • @leonardonevarez2522
    @leonardonevarez2522 3 роки тому +1

    where did you get the basis of .32 when identifying if it's oblique or orthogonal?????

  • @SudarshanBaurai
    @SudarshanBaurai 2 роки тому

    Thank you Prof. 🙏

  • @DrPsychlops
    @DrPsychlops Рік тому

    Does it matter that this is PCA? I'm doing PAF; would I look at the factor correlation matrix? Is the value |.32| to determine if I'm running oblique vs. orthogonal?

  • @theresiabusagara7909
    @theresiabusagara7909 6 років тому +1

    Thank you again for very educative clip.

    • @theresiabusagara7909
      @theresiabusagara7909 6 років тому

      Please Can you provide reference used for the selection of the rotation method. I refer the .32 as the referred loading for the choice to be made.

  • @MsStinaB
    @MsStinaB 6 років тому +2

    Do you have any good references on which rotation method to use and where does the absolute of .32 come from regarding correlation values? Need this for a publication.

    • @sebi1988777
      @sebi1988777 5 років тому +5

      Tabachnick and Fiddell (2007, p. 646) argue that “Perhaps the best way to decide between
      orthogonal and oblique rotation is to request oblique rotation [e.g., direct oblimin or promax from
      SPSS] with the desired number of factors [see Brown, 2009b] and look at the correlations among
      factors…if factor correlations are not driven by the data, the solution remains nearly orthogonal. Look
      at the factor correlation matrix for correlations around .32 and above. If correlations exceed .32, then
      there is 10% (or more) overlap in variance among factors, enough variance to warrant oblique rotation
      unless there are compelling reasons for orthogonal rotation.”

  • @tonytaioftimestreamer2616
    @tonytaioftimestreamer2616 6 років тому

    These videos are very helpful thank you!!

    • @DrGrande
      @DrGrande  6 років тому +1

      You're welcome!

  • @riksawibawa4630
    @riksawibawa4630 8 місяців тому

    Hello Dr Grande. My name is Riksa. I'm PhD Student, and I'm working on PCA.
    Thank you for your explanation related to selecting rotation in factor analysis. I followed your steps, and I'm using direct oblimin methods to analyze because I believe that every items are correlated, but how about if the results in the rotated component matrix mentioned "only one component was extracted. The solution cannot be rotated."
    What should I do Dr. Grande?
    Please kindly your information.
    Thank you

  • @MartinaHertl
    @MartinaHertl 7 років тому

    Great video, very useful. Thank you.

    • @DrGrande
      @DrGrande  7 років тому

      You're welcome, thanks for watching -

  • @dilrubabasser8724
    @dilrubabasser8724 4 роки тому

    Thank you very much for this informative video! I had a question. I used an oblimin rotation. In output where can I see the rotated factor loadings? In Pattern Matrix Table or in Structure Matrix Table?

  • @svetlanabesklubova6362
    @svetlanabesklubova6362 5 років тому

    Dr. Todd Grande, thank you for the video, very good explanation! I conducted the varimax rotation. In some cases, I got complex variables with loading 0.466 and 0.455 (example) to different groups. What I should do in this case? Should I leave this item in a group with loading 0.466?

  • @DrHanjabamBarunSharma
    @DrHanjabamBarunSharma 4 роки тому +1

    references for significant loading, zero loading, complex items etc..plz

  • @halilemrekocalar6537
    @halilemrekocalar6537 7 років тому

    thank you for explanation which is so useful for me!

    • @DrGrande
      @DrGrande  7 років тому

      You're welcome, thanks for watching -

  • @aymanzein7
    @aymanzein7 5 років тому

    In depth video, thanks
    1- If the complex variables persist ( whenever I delete one , another one pops up ) can I keep them ?
    2- Can I use any Extraction method for Oblimin ?

    • @mahasarwar5513
      @mahasarwar5513 4 роки тому

      Hey. Did you get your answer from anywhere?

    • @aymanzein7
      @aymanzein7 4 роки тому

      @@mahasarwar5513 Yes , I recommend : Hair, Multivariate Data Analysis 7th edition Ch.4 Exploratory Factor Analysis

  • @mohammadmasroorzafar9728
    @mohammadmasroorzafar9728 3 роки тому +1

    How we decide from 0.32?
    What is the basis? Can you share the name ot book Or research paper
    Please

  • @youthf7c343
    @youthf7c343 8 років тому +1

    What is rotation? I want to visualize that concept. What components on the axis are rotated?
    And under what conditions do we choose varimax or quartimax, equimax . thanks :)

    • @abyarthagoswami7663
      @abyarthagoswami7663 8 років тому

      How are factors formed in factor analysis

    • @khalilsaleh2984
      @khalilsaleh2984 6 років тому

      rotate the items to form the factor
      select type of rotation depend on the correlation status if it is above .32 or less than it ,, insignificant differences among subcategory rotation

    • @2736492821
      @2736492821 6 років тому

      www.theanalysisfactor.com/rotations-factor-analysis/ I reckon this help in visualizing the concept of rotation, cheers

  • @gideonvictor1490
    @gideonvictor1490 5 років тому +1

    Thank you!

  • @newgeneration8390
    @newgeneration8390 5 років тому

    you hit the bull's eye... awesome

  • @neuroscience5994
    @neuroscience5994 6 років тому

    Why correlations of specifically 0.32 for direct oblimin to be useful? Is there a reference for this?

    • @cintiacampos3454
      @cintiacampos3454 6 років тому

      Did Todd Grande answer your question? I also could not understand where is from de the magic number 0.32

    • @sebi1988777
      @sebi1988777 5 років тому +5

      Tabachnick and Fiddell (2007, p. 646) argue that “Perhaps the best way to decide between
      orthogonal and oblique rotation is to request oblique rotation [e.g., direct oblimin or promax from
      SPSS] with the desired number of factors [see Brown, 2009b] and look at the correlations among
      factors…if factor correlations are not driven by the data, the solution remains nearly orthogonal. Look
      at the factor correlation matrix for correlations around .32 and above. If correlations exceed .32, then
      there is 10% (or more) overlap in variance among factors, enough variance to warrant oblique rotation
      unless there are compelling reasons for orthogonal rotation.”

  • @naveens806
    @naveens806 4 роки тому

    How to write hypothesis for above problem

  • @patrickdi910
    @patrickdi910 7 років тому +1

    lol the questions here are dumb as hell. thx for the video it was quite helpful

  • @biniambekele7267
    @biniambekele7267 4 роки тому

    your explanations are fantastic but the videos are not good. they all lack visibility!