Solutions to Navier-Stokes: Poiseuille and Couette Flow

Поділитися
Вставка
  • Опубліковано 31 гру 2020
  • MEC516/BME516 Fluid Mechanics, Chapter 4 Differential Relations for Fluid Flow, Part 5: Two exact solutions to the incompressible continuity and Navier-Stokes equations. One solution is for laminar steady flow between fixed parallel plates, where the flow is driven by a pressure gradient (Poiseuille Flow). The other solution is for laminar steady flow between parallel plates where the flow is driven only by the motion of the upper plate (Couette Flow).
    All of the videos in this Introductory Fluid Mechanics course, sample exams (with solutions), and a copy (pdf) of this presentation can be downloaded at:
    www.drdavidnaylor.net
    Course Textbook: F.M. White and H. Xue, Fluid Mechanics, 9th Edition, McGraw-Hill, New York, 2021.
    #fluidmechanics #fluiddynamics

КОМЕНТАРІ • 58

  • @FluidMatters
    @FluidMatters  Рік тому +9

    All the videos (and pdf downloads) for this introductory Fluid Mechanics course are available at: www.drdavidnaylor.net/

  • @vor6126
    @vor6126 10 місяців тому +11

    this video alongside your excellent commentary is absolutely a gem to Mechanical Engineering education. much Love

    • @FluidMatters
      @FluidMatters  10 місяців тому

      Glad to hear you found this helpful. Bes of luck with your studies,

    • @DictiusTeNecare
      @DictiusTeNecare 3 дні тому

      Oh yes, i have to say the same. Tomorrow i will write the fluid mechanics 1 exam, and this video is a really good explanation to improve my formula collection and my knowledge 🙂 Thank you!

  • @majroi
    @majroi 3 місяці тому +1

    Greetings from Turkey, this material helped me a lot. Thanks professor.

  • @StressedHades37
    @StressedHades37 3 роки тому +7

    Thanks for the explanation. That was easier to understand than my textbook!

  • @abdofast5
    @abdofast5 3 роки тому +15

    Sir This is absolutely incredible! You make an excellent relation between differential equations and the course material. I'm hoping you make a fluid dynamics course in its entirety. Thank you so much!

  • @PsychicJaguar19
    @PsychicJaguar19 2 роки тому +2

    This is very much appreciated, very clear and concise explanation.

  • @batbayarbatsukh6393
    @batbayarbatsukh6393 3 місяці тому +1

    Greetings from Mongolia. Thanks for the clear explanation. Тhis helped me a lot
    I wish you good health.

    • @FluidMatters
      @FluidMatters  3 місяці тому

      Mongolia! Hope to visit one day. Glad to hear the video was helpful.

  • @user-safaa334
    @user-safaa334 3 роки тому +2

    thank you so much for your excellent explain

  • @portreemathstutor
    @portreemathstutor 4 місяці тому +1

    Thank you so much for these videos. They make my course much easier.

    • @FluidMatters
      @FluidMatters  4 місяці тому

      Thanks for the nice comments. Best of luck with your studies.

  • @specter1001
    @specter1001 2 роки тому +1

    incredibly helpful

  • @meraihianouar9022
    @meraihianouar9022 2 роки тому +1

    Im so grateful nd thankful to u sir, very useful this vidéo

  • @Frostbyte-Game-Studio
    @Frostbyte-Game-Studio 2 роки тому

    good sir thank you for your video, helped out a lot

  • @luisenriquejaracieza6498
    @luisenriquejaracieza6498 2 роки тому

    Thank you so much, sir.

  • @masoudadli108
    @masoudadli108 3 місяці тому +1

    the best of the best,, you make life easy..thanks from Sudan Africa

    • @FluidMatters
      @FluidMatters  3 місяці тому

      Thanks for the kind words. Glad to hear the videos are helpful.

  • @requiem-ph5xx
    @requiem-ph5xx Рік тому +2

    great vid broski

  • @ahmedmokkedem7525
    @ahmedmokkedem7525 3 роки тому +1

    Thanks so much sir

  • @vidurapaathukkalam..8744
    @vidurapaathukkalam..8744 2 роки тому +1

    God gave me the opportunity to see ur video..thank god..thank u for ur explanation..i really Adore 🥰

  • @javijavi6166
    @javijavi6166 2 роки тому +1

    Sir thankyou for uploading this, can we have a video of generalized couette flow?

  • @baaa-ej7xj
    @baaa-ej7xj Місяць тому +1

    He saved my final exam😭😭😭

  • @ThePerks.
    @ThePerks. 6 місяців тому

    Outstanding

  • @user-qy7gg6hg5b
    @user-qy7gg6hg5b 2 роки тому

    Thank you!

  • @RGCAD
    @RGCAD Місяць тому

    Great stuff, for the last problem i see we have our origin placed midway between the plates, I would therefore expect the y at the bottom to be y = -h

    • @FluidMatters
      @FluidMatters  Місяць тому

      Agree. The axis in the graphic (that I stole from the book publisher) is in the wrong place. But I think it's totally clear in the presentation that y=0 is at the bottom. At some point, a long time ago, I fixed it in the pdf download.

  • @soso-zz9qf
    @soso-zz9qf 4 місяці тому +1

    Wow BLESS YOU I was about to give up

  • @alexklaver9936
    @alexklaver9936 2 роки тому +1

    Your videos are so helpful! What happened to dynamic viscosity in the Couette flow example around 17:53 of the video?

    • @FluidMatters
      @FluidMatters  2 роки тому +2

      The assumption is that dynamic viscosity is constant, which is true for a Newtonian, isothermal flow. So, you can divide both sides by dynamic viscosity, and it goes away. This tells you that the form of velocity profile does not depend on the fluid viscosity for Couette flow.

    • @alexklaver9936
      @alexklaver9936 2 роки тому

      @@FluidMatters thank you! I should have picked Ryerson. You have a real gift for explaining.

  • @splendidteaching
    @splendidteaching 2 роки тому +1

    Really like your videos. Will just point out that slide at 20:11 should say "linear" instead of "parabolic" cor Couette flow. Although you do correct it about 10 seconds later.

    • @FluidMatters
      @FluidMatters  2 роки тому +1

      Yeh, Sorry. These videos are recorded in one "session" without a script. So, misspeaking is going to happen now and again.

  • @francisbacor3214
    @francisbacor3214 2 роки тому +1

    Why is d2u/dy2 not cancelled in one dimensional flow? Isnt the flow only in the x-direction
    Your help is highly appreciated

    • @FluidMatters
      @FluidMatters  2 роки тому +1

      "u" IS the x-component of velocity, which is not zero, except at the wall. Thus, d^2u/dy^2 is the curvature of the u-component of velocity, which is certainly no zero for Poiseuille flow. If you don't get this, review your basic calculus of the meanings of derivatives.

  • @jeanbedessounda3571
    @jeanbedessounda3571 2 роки тому

    can you show an example of a case where the top plate is fixed and the pressure gradient is moving the bottom plate please

    • @snehajain4334
      @snehajain4334 2 роки тому

      Just reverse the boundary conditions., With appropriate signs

  • @sajadadnan9555
    @sajadadnan9555 3 роки тому

    What are the limitations of annalytic solution of fluid flow equations ?

    • @FluidMatters
      @FluidMatters  3 роки тому +1

      For this to be an exact solution the flow has to be isothermal because the fluid properties (that vary with temperature ) are assumed to be constant. Also, flow must be laminar (and incompressible). So, Reynolds number must be ~

  • @user-xz7xt5cl1m
    @user-xz7xt5cl1m 2 роки тому

    Sir What if we do not neglect the gravity effect (acceleration g for - y direction)? Does the calculation change?

    • @FluidMatters
      @FluidMatters  2 роки тому +1

      If you include g in the y-direction you get a hydrostatic pressure gradient in the y-direction, but this has no influence on the flow (in the x-direction).

    • @user-xz7xt5cl1m
      @user-xz7xt5cl1m 2 роки тому

      @@FluidMatters Thank you so much!

  • @SumanthPhaniVarmaPenmetcha
    @SumanthPhaniVarmaPenmetcha 9 місяців тому

    At 15:00 is the volumetric flow rate, Q= Vdot/w(width?)

    • @FluidMatters
      @FluidMatters  9 місяців тому

      No. The flow rate per unit depth (into the page) is Q=V_avg*A=V_avg*2h, where 2h is the flow cross sectional area per unit depth into the page.

    • @SumanthPhaniVarmaPenmetcha
      @SumanthPhaniVarmaPenmetcha 9 місяців тому

      The units are still the same as Q/w right? m^2/sec?@@FluidMatters

    • @FluidMatters
      @FluidMatters  9 місяців тому

      @@SumanthPhaniVarmaPenmetcha Yes. The units are flow rate (m^3/s) per unit depth (m). So, m^3/(s m)=m^2/s. That should make complete sense, if you think about it.

  • @mrsengineering3663
    @mrsengineering3663 2 роки тому

    Pleas sir ...I want the reference for this subject ...thanks for you

    • @FluidMatters
      @FluidMatters  2 роки тому +1

      It is in the video description: Course Textbook: F.M. White and H. Xue, Fluid Mechanics, 9th Edition, McGraw-Hill, New York, 2021.

  • @nzearimo
    @nzearimo Рік тому

    If the distance apart is 2H, why do you use h for your boundary condition instead of 2h at upper wall?

    • @FluidMatters
      @FluidMatters  Рік тому

      The coordinate system is in the middle of the channel . Wall are y= +h, - h.

    • @nzearimo
      @nzearimo Рік тому

      @@FluidMatters Yes that,why -h for a BC, instead of zero? How does -h and h sum up to '2H'?

    • @FluidMatters
      @FluidMatters  Рік тому

      @@nzearimo I don't think I use 2H in the problem, I use 2h. All I can say is: Look at the problem diagram more closely. Deta_y=h-(-h)=2h. I cannot help you beyond this.

  • @DrDerivative
    @DrDerivative 8 місяців тому +1

    🐐🐐🐐🐐🐐🐐🐐🐐 You sir are the GOAT.

  • @abdulhakeemshehu3559
    @abdulhakeemshehu3559 Рік тому +1

    Thank you sir

    • @FluidMatters
      @FluidMatters  Рік тому +1

      Glad to hear the video was helpful. Good luck with your studies.