China math Olympiad Geometry Problem | You should be able to solve this!

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 13

  • @DB-lg5sq
    @DB-lg5sq Місяць тому +1

    شكرآ لكم على المجهودات
    يمكن استعمال OS=ST=2
    QT=OT=4
    OP /OS =QT/TS
    OP=1
    PQ^2=SP^2 + SQ^2 =4a^2
    a^2 = 25/4
    a=5/2

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    Point "Q" is located at 45° from "O", then the coordinates are x=4, y=4
    Labelling segment OP = m
    Tangent secant theorem:
    4.m = 2² ---> m=1
    Pytagorean theorem:
    (2r)² = 4² + (4-m)² = 4²+3²
    r = 2,5 cm
    A = ½πr² = 9,82 cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    Point "Q" is located at 45° from "O", then the coordinates are x=4, y=4
    R² = x² + y² = 2*4²
    R = √32 = 4√2 cm
    Labelling segment OP = m
    Tangent secant theorem:
    4.m = 2² ---> m=1
    Cosine rule:
    (2r)²=1²+R²-2Rcosα
    4r² = 1 + (4√2)² - 8√2cos45°
    4r² = 1 + 32 - 8 = 25
    r = 2,5 cm
    A = ½πr² = 9,82 cm² ( Solved √ )

  • @michaeldoerr5810
    @michaeldoerr5810 Місяць тому +1

    The area is (25/8)pi units squared. At the 4:25 mark, I think that when HL congruence is established, it is established due to a common angle and common side being justified by right angle. I think that ALL congruence postulates require a common side and angle to be established. And then you combined that with the circle theorem and that justified and that exact sides. I hope that that is a sufficient explanation that shows you that I SHOULD be able to do this. And I hope that my comments on the other past videos indicate that!!!

  • @Zina308
    @Zina308 Місяць тому

    Join PQ to intersect CS at K. Join PS & QS. < POK= SOK= 45. KSO is an isosc. triangle, OS= MS= 2. Triangles POS & STQ are similar. PO/ ST=OS/TQ= 1/2. 2PQ= ST=2, PQ=1. In triangle QPO, CK= 1/2 PO= 1/2. CS= a= CK+ KS=1/2 + 2= 5/2..

  • @murdock5537
    @murdock5537 Місяць тому

    φ = 30° → sin⁡(3φ) = 1; TO = TQ = 4 = SO + ST = 2 + 2; SC = QC = PC = a = ?
    sin⁡(STQ) = 1 → QS = 2√5 = QW + SW = √5 + √5 → sin⁡(SWC) = 1; TQS = CSW = δ →
    sin⁡(δ) = √5/5 → cos⁡(δ) = 2√5/5 = √5/a → a = 5/2 → area semicircle = 25π/8
    btw: PS = √5; PO = 1; OQP = γ → cos⁡(γ) = 7√2/10 → sin⁡(γ) = √2/10 → tan⁡(γ) = 1/7

  • @quigonkenny
    @quigonkenny Місяць тому

    Let M be the center of the semicircle. Let the radius of semicircle M be r and the radius of quarter circle O be R. Let OP = x.
    Draw MS. As MS is a radius of semicircle M, MS = r. As OB is tangent to semicircle M at S, ∠OSM = 90°.
    Let N be the point on MS where PN is parallel to OB and perpendicular to MS. As ∠POS and ∠OSN equal 90° and ∠NPO and ∠SNP equal 90° by construction, POSN is a rectangle, NS = OP = x, and NP = OS = 2.
    Triangle ∆PNM:
    NP² + MN² = MP²
    2² + (r-x)² = r²
    4 + r² - 2xr + x² = r²
    x² - 2xr + 4 = 0 --- [¹]
    Let T be the point on OA where QT is perpendicular to OA and parallel to OB. As ∠TOQ = 90°/2 = 45°, as arcs AQ and QB are congruent, and OQ = R, QT = Rsin(45°) = R/√2, and OT = Rcos(45°) = R/√2.
    As QT and NP are parallel, and QP intersects both, ∠PQT and ∠QPN are alternate interior angles, and thus congruent. As ∠QTP = ∠PNM = 90°, ∆QTP and ∆PNM are similar triangles.
    QT/QP = NP/MP
    (R/√2)/2r = 2/r
    R/√2 = (2r)2/r = 4
    R = 4√2
    MN/MP = TP/QP
    MN/r = (4-x)/2r
    MN = r(4-x)/2r = (4-x)/2 = 2 - x/2
    MS = MN + NS
    r = (2-x/2) + x = 2 + x/2 --- [²]
    x² - 2xr + 4 = 0
    x² - 2x(2+x/2) + 4 = 0
    x² - 4x - x² + 4 = 0
    4x = 4
    x = 1
    r = 2 + x/2
    r = 2 + (1)/2 = 5/2
    Semicircle M:
    [M] = πr²/2 = π(5/2)²/2 = (25/4)π/2 = 25π/8 sq units

  • @sofiayurlagina104
    @sofiayurlagina104 Місяць тому

    Замечательное решение с объяснением. Спасибо большое. Thanks.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    (2)^2=4 90°A0PSQD/4=22.2AOPSQD 2^11.2 1^11^1.2 1^1.2 1.2 (AOPSQD ➖ 2AOPSQ+1).

  • @Emerson_Brasil
    @Emerson_Brasil Місяць тому

    This question, if I'm not mistaken, has already been asked on this channel.

  • @shaozheang5528
    @shaozheang5528 Місяць тому

    The answer should be 2pi sq units

  • @shaozheang5528
    @shaozheang5528 Місяць тому

    PO should be 2 cm

  • @幕天席地-w9c
    @幕天席地-w9c Місяць тому

    Draw parallel of OB from Q, intersecting AO at H. OH=HQ=OS*2=4. OS^2=OP*OH, so OP=1. r^2=(r-OP)^2+OS^2, so r=5/2