An unexpectedly cool integral

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 30

  • @ashyes8626
    @ashyes8626 Місяць тому +28

    Man coughs and is still terribly sorry about that, it's ok man!

  • @aravindakannank.s.
    @aravindakannank.s. Місяць тому +21

    Integral :💀
    Solution :🥶( chill guy)

    • @creativename.
      @creativename. Місяць тому +1

      guy: terribly sorry about that

  • @michaelihill3745
    @michaelihill3745 Місяць тому +9

    Great solution. I’m used to seeing a square root of 2 in an answer; this time it was cool to see a square root of 3 appear.

  • @threepointone415
    @threepointone415 Місяць тому +4

    "How complicated do you want your natural logarithms?"
    Maths 505: Yes

  • @bnice24
    @bnice24 Місяць тому +13

    Cool math snack🥯

  • @cdkw2
    @cdkw2 Місяць тому +9

    I have a physics exam today, its 2 AM why am I watching this...

  • @MrWael1970
    @MrWael1970 Місяць тому +2

    Thank you for your innovative ideas.

  • @CM63_France
    @CM63_France Місяць тому +16

    Hi,
    "ok, cool" : 0:40 , 3:33 ,
    "terribly sorry about that" : 3:16 , 4:11 , 4:21 , 6:10 , 7:33 , 8:15 .

    • @Tabu11211
      @Tabu11211 Місяць тому +2

      Favorite parts

  • @rishabhhappy
    @rishabhhappy Місяць тому +5

    The Result is Cool as always

  • @yurfwendforju
    @yurfwendforju Місяць тому +1

    you know when someone mastered math when he's watching your video and all he does is the skip five second button the likes and clicks off. i was impressed when I saw him in the library today

  • @manstuckinabox3679
    @manstuckinabox3679 Місяць тому +1

    Finally, an interal worthy of flexing over my new math friend. imma tell em to sub obviously. I'm so going to use you for next sem's complex analysis to also rizz on my professor, THANKS MATHS 505 KAMAL!

  • @kro_me
    @kro_me Місяць тому +2

    i really enjoy these vids when i get them recommended lol

  • @mikecaetano
    @mikecaetano Місяць тому +1

    The new audio track feature translating your remarks into other languages is neat. I haven't seen that before. I checked out Spanish and Japanese. The voices sound natural rather than artificially generated. Cool. Expand your audience. Now back to the original from the start.

  • @slavinojunepri7648
    @slavinojunepri7648 Місяць тому

    Excellent

  • @Leonhardeuler2219
    @Leonhardeuler2219 Місяць тому

    Congrats for the job champs 🎉🎉

  • @rishabhshah8754
    @rishabhshah8754 Місяць тому +1

    hi, nice video, i have a few questions
    where did you study advanced integrals, especially involving the gamma and beta functions? and,
    where did you do you high school schooling from?

    • @maths_505
      @maths_505  Місяць тому +2

      @@rishabhshah8754 I learned alot of math simply in the process of solving integrals 😂 just look for integrals to solve and you should be covered.
      As far as highschool is concerned, I'm Pakistani and I just did the local high school thing we have here.

  • @sundaresanabishek5127
    @sundaresanabishek5127 Місяць тому +2

    Hey broo fan from Sri Lanka ❤🎉

    • @maths_505
      @maths_505  Місяць тому +3

      @@sundaresanabishek5127 hey broo friend from Pakistan ❤️🎉

  • @АндрейПергаев-з4н
    @АндрейПергаев-з4н Місяць тому

    Выражение под логарифмом в числителе представляет собой сумму геометрической прогрессии.

  • @BottlePack
    @BottlePack Місяць тому

    If the alternating sum is replaced by (1+x+x^2...x^2n), wolframalpha says it is not convergent. Is it right?

    • @BottlePack
      @BottlePack Місяць тому

      split interval to (0,1) and (1,infinity), we have same result still

  • @tiagobeaulieu1745
    @tiagobeaulieu1745 Місяць тому

    How did no one in the comments realize you missed a factor of x squared in the numerator? Pleeeeease it pains me to see a solution development for an integral that is not the one at the start of the video 😭😭😭

  • @DanielPascuasTijero
    @DanielPascuasTijero Місяць тому

    The result is correct, but the method of
    solution is wrong!!
    You have to avoid the non convergent
    integral
    \int_0^\infty 1/(1+x).
    In order to do that, split the integral \int_0^\infty
    (x dx)/(1+x^3) as the sum of the integral between 0 and 1 plus the integral between 1 and \infty. Perform the substitution t=1/x in the second integral to show it is equal to
    \int_0^1 dx/(1+x^3). Thus our integral equals to the arctangent integral
    (2/3)\int_0^1
    ((1+x)dx)/(1+x^3)=
    (2/3)|
    \int_0^1dx/(x^2-x+1)
    which can be easily computed.

  • @historicallyaesthetic2899
    @historicallyaesthetic2899 Місяць тому

    Can you be my pookie?

  • @cadmio9413
    @cadmio9413 Місяць тому

    Just wanna say hi ;p