A surprisingly difficult integral: int 0 to π/2 arctan(2sin(x)) solution using Feynman's trick

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 41

  • @Maths-Integrals
    @Maths-Integrals 3 місяці тому +26

    It's a very nice integral and the solution is interesting. There are also many very interesting properties of the Dilogarithm function. This simplifies the final result: I= ((pi)^2)/6 -(3/2)*(ln(phi))^2 where "phi" denote the golden ratio

  • @Nottherealbegula4
    @Nottherealbegula4 3 місяці тому +6

    These just keep getting better and better, thankes for accepting my request!

  • @ranaranino4731
    @ranaranino4731 3 місяці тому +8

    at 7:40 multiplie denominator and numerator inside logarithm by alpha and make substitution alpha=sinh(y) leads Quickly to the result

  • @cosimo7770
    @cosimo7770 2 місяці тому +2

    A work of art.

  • @MrWael1970
    @MrWael1970 2 місяці тому +3

    I'm proud for attending this video. Best regards.

  • @xanterrx9741
    @xanterrx9741 2 місяці тому

    Absolutle great solution, well spended first 20 min after woken up , thanks for your hard work and waitng for next video

  • @Mosux2007
    @Mosux2007 3 місяці тому +7

    Have you ever dealt with integrals involving elliptic functions?

  • @CM63_France
    @CM63_France 2 місяці тому +1

    Hi,
    I know that tan^-1 (-2) = 2 tan^-1 (phi) (it's the angle between 2 adjacent faces of the dodecahedron)
    so tan^-1 (2) = pi - 2 tan^-1 (phi) ,
    so tan^-1 (2) / 2 = pi/2 - tan^-1 (phi) ,
    so tan^-1 (2) / 2 = tan^-1 (1/phi) .
    13:43 : sin theta = 2 z / ( 1 - z^2) , minus and not plus, but fortunately this term cancelled out later .
    "ok, cool" : 1:33 , 10:01 , 14:24 , 19:21 ,
    "terribly sorry about that" : 3:34 , 6:30 , 11:16 , 12:02 , 15:22 , 16:39 , 16:42 , 16:52 , 17:31 , 17:46 .

  • @JakePinedo-ns4yu
    @JakePinedo-ns4yu 3 місяці тому +6

    “Terribly sorry about that” it’s fine bruh nobody cares if u accidentally write something weird

  • @mcalkis5771
    @mcalkis5771 2 місяці тому

    A good day when you upload Kamal.

  • @symmetricfivefold
    @symmetricfivefold 3 місяці тому

    watching this feels like watching teacher solving a "simple question" and ends up with me not knowing where am i

  • @barryfortnite3849
    @barryfortnite3849 2 місяці тому

    can you do the integral from 0 to infinity of 1/x!

  • @BoringExtrovert
    @BoringExtrovert 2 місяці тому

    I haven’t finished the entire thing yet, but why don’t you jut use inverse hyperbolic tan for the form dx/(a-x2)?

  • @Circuito28
    @Circuito28 2 місяці тому

    Yo bro do you like algebraic or complex geometry problems/topics? Also algebraic number theory would be awesome, think about it

  • @threepointone415
    @threepointone415 3 місяці тому

    As the saying goes: It's worth it's weight in Golden Ratios

  • @daveydd
    @daveydd 2 місяці тому

    Sir I have a question, why or how is ln(2) so related to the trig functions? Especially when their integrals involve natural logarithms. What's its essence? What's its meaning behind it? Is it because of ln(sin(π/4)) and ln(cos(π/4)) being equal to -(1/2)(ln(2)) ? Perhaps that's only one of the bunch of reasons, I've tried googling but I haven't found much.. any ideas?

    • @utkarshsaini5650
      @utkarshsaini5650 Місяць тому

      its very early for you to start with integration first learn functions, inverse trigno, other topics

  • @Tosi31415
    @Tosi31415 3 місяці тому +1

    could've used a particular formula at the end to remove the dilogarithms but cool nonetheless

  • @willemesterhuyse2547
    @willemesterhuyse2547 2 місяці тому

    He picked it up by 10:48.

  • @kingzenoiii
    @kingzenoiii 2 місяці тому +2

    ah yes, the leibniz trick

  • @jejnsndn
    @jejnsndn 3 місяці тому +1

    Can you do it using double intrgral?

    • @Rundas69420
      @Rundas69420 3 місяці тому +1

      I think so, because the applicability of the Leibnitz rule is equivalent to transforming the single integral into a double integral by taking a derivative.

    • @maths_505
      @maths_505  3 місяці тому +2

      Yes indeed

  • @TMH2007
    @TMH2007 2 місяці тому +1

    I was busy for a few months and after coming back i sense a change in style of thumbnails, or is it only me?

  • @gowipe-grandcross
    @gowipe-grandcross 3 місяці тому +1

    Hello, I would like to send you a result about a generalisation of the dirichlet integral (with the proof ofc) : the integral from 0 to infinity of sin(x^n)/x^n. I don't think you already present this on your channel.
    Is there a way to do it ?

    • @maths_505
      @maths_505  3 місяці тому +2

      I actually plan on presenting my solution soon

    • @gowipe-grandcross
      @gowipe-grandcross 3 місяці тому +1

      ​@@maths_505what method did you use ? To see if it differ from mine

  • @Mario_Altare
    @Mario_Altare 2 місяці тому

    I'm afraid I've got the sub wrong: after considering that sin x = tan x/√(1+tan^2⁡x), I let tan x = u, so
    I'(a) = ∫_0^∞ u du/{(√(1+u^2 )[1+(a^2+1) u^2])}
    Then, after letting 1+u^2 = v^2,
    I'(a) = ∫_0^1 dv/[1+(a^2+1)(1-v^2 )]
    I got stuck because I obtained the following integral:
    I(a) = 1/2 ∫_0^2 1/(√(1+a^2 ) √(2+a^2 )) * ln⁡((√(2+a^2 )+√(1+a^2 ))/(√(2+a^2 )-√(1+a^2 )))da
    which is a bit of a hell... Maybe there's a further sub to go on from here, but maybe there's not

  • @willemesterhuyse2547
    @willemesterhuyse2547 2 місяці тому

    You didn't pick up the error by 8:35!

  • @willemesterhuyse2547
    @willemesterhuyse2547 2 місяці тому

    At timestep 6:39 you left out an alpha in the denominator.

  • @jackkalver4644
    @jackkalver4644 3 місяці тому

    I learned that my calculator can be deceptive.

  • @orionspur
    @orionspur 3 місяці тому

    Ohhhkay cruel!

  • @MathematicFanatic
    @MathematicFanatic 2 місяці тому

    ok now in terms of alpha 😳

  • @Babyshark-co8ks
    @Babyshark-co8ks 3 місяці тому +41

    No views in 12 seconds? Bro fell off

    • @maths_505
      @maths_505  3 місяці тому +10

      Indeed

    • @Bruh-lb5ck
      @Bruh-lb5ck 2 місяці тому +2

      I’m bored of this kind of comment. Who even started it in the first place

  • @stuffthings1417
    @stuffthings1417 3 місяці тому +1

    not surprising. but i've been out of the game for 20 years.

  • @alexkaralekas4060
    @alexkaralekas4060 3 місяці тому

    I mean it feels a little cheated by not taking the definite integral at 7:40 because if you did you wouldn't be able to take the dilogarithm

    • @maths_505
      @maths_505  3 місяці тому

      @@alexkaralekas4060 we still can since the only change would be the upper limit of the integral (replacing 2 by, say, x)

  • @dr.hanamantkarande9544
    @dr.hanamantkarande9544 3 місяці тому

    Hello