Finding Closed Sets, the Closure of a Set, and Dense Subsets Topology

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 23

  • @corissahensche3093
    @corissahensche3093 7 років тому +12

    This was so simple and to the point. I feel like I've been reading and watching videos for hours. Having a physical example helps understand. All definitions are so abstract, so it helps to see an example. Thank you for your time!

  • @shukhratergashov9289
    @shukhratergashov9289 8 місяців тому +1

    I am really thankful for you

  • @shanicekanana371
    @shanicekanana371 2 місяці тому +1

    Thank you so much

  • @rahul_j_mathur
    @rahul_j_mathur 8 років тому +2

    Really very well done! Thank you very much, your videos are really helping me in this Metric Spaces module I've taken this year :)

  • @mohamedali-im6jf
    @mohamedali-im6jf 5 років тому +3

    Thank you very much it was so easy to understand

  • @sureshkaruppasamy6257
    @sureshkaruppasamy6257 4 роки тому +1

    I never seen before this topics in explain sir awesome👏👏👏👏👏 thank you sir

  • @bethburer8307
    @bethburer8307 4 роки тому

    Does X contain a or {a}? I’m a little confused because you state closure is the intersection of sets containing “set a” but it looks like you’re creating intersections of sets containing the *element* a. Is this essentially the same? Does the set {a,c} contain {a} (a set), or a, an element? Thanks in advance for help in understanding.

  • @ArinaBelova-r8w
    @ArinaBelova-r8w 4 роки тому

    Thank you for the video! A question: isn't singleton set a closed set?

    • @TheMathSorcerer
      @TheMathSorcerer  4 роки тому +2

      the answer is , it depends on what your topology is and how you define open sets. Remember a topology is a set X together a collection T of open subsets of X. The elements of T are called open sets. How you define "open" determines what elements belong to T. There are different topologies, and so the answer varies. In the "usual topology" on the set of real numbers, singletons are closed.

  • @ameersahi2168
    @ameersahi2168 3 роки тому

    Hi Dr. Is there any relation between the topology and statistics? If there, can you suggest me a titles about this topic please.

  • @saikatpk28
    @saikatpk28 8 років тому +1

    @Math Sorcerer:where do u get c?

  • @soroushpakniat9963
    @soroushpakniat9963 8 років тому +2

    thanks

  • @rundalshaer4909
    @rundalshaer4909 8 років тому +1

    thank you ...

  • @m7sen279
    @m7sen279 Рік тому

    Life saver

  • @AjayPatel-te4kb
    @AjayPatel-te4kb 5 років тому +1

    Tx a lot

  • @hawon8986
    @hawon8986 7 років тому

    thanks :D

  • @saikatpk28
    @saikatpk28 8 років тому

    sorry I missed it