Definition of Normal Subgroups | Abstract Algebra

Поділитися
Вставка
  • Опубліковано 10 гру 2024

КОМЕНТАРІ • 33

  • @WrathofMath
    @WrathofMath  Місяць тому

    Support this course by joining Wrath of Math to access exclusive and early abstract algebra videos, plus lecture notes at the premium tier! ua-cam.com/channels/yEKvaxi8mt9FMc62MHcliw.htmljoin
    Abstract Algebra Course: ua-cam.com/play/PLztBpqftvzxWT5z53AxSqkSaWDhAeToDG.html
    Abstract Algebra Exercises: ua-cam.com/play/PLztBpqftvzxVmiiFW7KtPwBpnHNkTVeJc.html

  • @golden_smaug
    @golden_smaug Рік тому +3

    It was so easy to understand normal subgroups with this video, unlike my previous 2 months in college lol. Thank you! :)

  • @liketsontobo8463
    @liketsontobo8463 Рік тому +2

    never disappoints, your videos are always clear, thank you so much

    • @WrathofMath
      @WrathofMath  Рік тому

      That's always what I'm going for! Thank you for watching!

  • @MuniraDanish-w9x
    @MuniraDanish-w9x 9 місяців тому

    It was very helpful if you make a video about this topic with matrices and another complicated example of normal subgroup

  • @andersonrocha8186
    @andersonrocha8186 Рік тому

    Maaaannnnn! Your explanations are great! Thank you so much!

    • @WrathofMath
      @WrathofMath  Рік тому

      Thank you! I really am trying to nail the clarity with my abstract algebra videos, glad to be helpful!

  • @MrCoreyTexas
    @MrCoreyTexas 4 місяці тому +2

    Your notation at 5:00 is throwing me off. I'm used to seeing two rows enclosed with parenthesis for permutation groups like in a previous video in this series. Also why doesn't each of the x, and inv(x) have 3 elements, you just have "(2 3)" (I would expect (1 2 3) or something like that)

    • @MrCoreyTexas
      @MrCoreyTexas 4 місяці тому

      I think I "decoded" your notation. If you look back to your video "Permutation Groups and Symmetric Groups", (2 3) corresponds to alpha = (1 2 3 / 1 3 2), and (1 2 3) must correspond to delta = (1 2 3 / 2 3 1). As I followed the order of the playlist, I never encountered this alternative notation. One of the challenges of teaching is putting yourself in the mind of a newbie :)

  • @PedroCristian
    @PedroCristian 4 місяці тому

    6:38 the subgroup is the alternating group, being the kernel of the signature morphism, it is normal.

  • @MuniraDanish-w9x
    @MuniraDanish-w9x 9 місяців тому +1

    Thank you so much

  • @jaubertnangola4205
    @jaubertnangola4205 7 місяців тому

    Very easy bro! I like your way to explain. Great tank for your help

    • @WrathofMath
      @WrathofMath  7 місяців тому

      Glad it helped! Thanks for watching!

  • @Cav-z1y
    @Cav-z1y 7 днів тому

    Using Lagrange theorem is my favourite way of proving normal, if G/H = 2 H is normal in G ✌️

  • @christopherrosson2400
    @christopherrosson2400 Рік тому

    Fantastic stuff. Thank you

    • @WrathofMath
      @WrathofMath  Рік тому

      Glad to help - thanks for watching!

  • @lukundonambela2374
    @lukundonambela2374 Рік тому

    Your videos are so helpful 👏👏

    • @WrathofMath
      @WrathofMath  Рік тому

      So glad to help - thanks for watching and let me know if you ever have any questions!

  • @طارقطارق-و9ز3ذ
    @طارقطارق-و9ز3ذ Місяць тому

    Nice explanation

  • @karinablanchard9511
    @karinablanchard9511 Рік тому +1

    Thank u!

    • @WrathofMath
      @WrathofMath  Рік тому

      Glad to help - thanks for watching!

  • @sumittete2804
    @sumittete2804 Місяць тому

    Hello sir, can you prove that symmetric group S_n has exactly 3 normal subgroups for n>=3 ; n not equal to 4? Please sir, make a video on this as well.

  • @OgundipeSamuel-cp6xt
    @OgundipeSamuel-cp6xt Рік тому

    Thank you soooooooo much 🤩

  • @vinuvs4996
    @vinuvs4996 Рік тому

    Very good lcture

  • @VNFilmography
    @VNFilmography Рік тому

    Thank you!

  • @MrCoreyTexas
    @MrCoreyTexas 4 місяці тому

    Is there a concept in mathematics called "concubine" lol that's what i think of when I hear "conjugate"

  • @edauzun7879
    @edauzun7879 Рік тому

    Thank you!!