Che altezza raggiunge il livello dell'acqua?

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 30

  • @larpanet3007
    @larpanet3007 Рік тому

    E Cardano era pure medico! Grazie per i video sempre piacevoli e pieni di spunti di riflessione

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому

      In realtà la storia delle scoperte delle formule per le equazioni di terzo e quarto grado è una specie di romanzo. Cardano non fu il primo a scoprire quella formula... Grazie di apprezzare il canale!

  • @gregorioeugenioragazzini1824

    Bellissima dimostrazione! Davvero. Chiedo solo una cosa per curiosità. Per chi ha impostato l'integrale considerando la semiparte inferiore si ritrova questa equazione (imponendo sempre R=1):
    3x^2-x^3-1=0
    So che sostituendo y=1-x si ottiene l'equazione usata nel video. Chiedevo se esiste una formula risolutiva per le equazioni di terzo grado del tipo: y^3 +py^2+q=0 (senza termine di primo grado)
    Grazie mille

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому +1

      Grazie del commento! L'equazione di terzo grado è risolubile nella sua forma generale ax^3+bx^2+cx+d=0. Sebbene sia possibile scrivere una formula per il caso generale, normalmente si effettua una sostituzione che fa "sparire" il termine di secondo grado (si trasla la cubica nel suo punto di flesso). È sempre possibile farlo.

  • @dawkinsfan660
    @dawkinsfan660 9 місяців тому

    Forse è una domanda stupida 😂: quando calcoli le radici cubiche dei due numeri complessi coniugati, in entrambi sostituisci k con lo stesso valore e poi sommi...però, un secondo...c’è modo di dimostrare che questo è il modo giusto di procedere, o che per esempio io possa sostituire k con 0 nella prima radice cubica e k con 1 nella seconda radice cubica e ottenere comunque una soluzione?

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  9 місяців тому +1

      Non è affatto stupida!! È un'osservazione corretta, in realtà ci sono 9 coppie possibili di valori, ma si dimostra facilmente che si ottengono solo tre soluzioni distinte. Grazie dell'osservazione!

    • @dawkinsfan660
      @dawkinsfan660 9 місяців тому

      @@GaetanoDiCaprio Grazie mille...per caso ha a che fare col fatto che la u e la v usate nella dimostrazione, moltiplicate tra di loro, devono dare.un risultato reale? O meglio...il cubo del loro prodotto

  • @mikelutt76
    @mikelutt76 Рік тому +4

    Da ingegnere, la soluzione data fino al valore approssimato mi bastava 😄, ma ho apprezzato moltissimo la seconda parte matematicamente più rigorosa.

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому +1

      😄

    • @fabiopicciolo9420
      @fabiopicciolo9420 Рік тому +1

      Io, ingenuamente, confidavo in Ruffini per l'equazione di terzo grado... 😕

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому +2

      @@fabiopicciolo9420 Beh sarebbe stato "comodo" certo...

    • @alessandroalberto6431
      @alessandroalberto6431 Рік тому

      Ma il livello raggiunto dall'acqua tiene conto delle forze di adesione per le quali il livello sulle pareti del recipiente risulterebbe maggiore rispetto al livello dell'acqua al centro dello stesso ?

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому

      @@alessandroalberto6431 Grazie dell'osservazione, naturalmente questo è essenzialmente un problema di Geometria, quindi si trascurano tutte le eventuali sottigliezze fisiche 😉

  • @DottKhan
    @DottKhan 4 місяці тому

    In alternativa si potrebbe trovare il valore con il volume della calotta sferica.

  • @LanfrancoAlbani
    @LanfrancoAlbani Рік тому

    Posso risolverlo senza calcoli con una bilancia, 5 litri di acqua e un righello (con segnati cm e mm)

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому

      Con quel metodo puoi arrivare al valore 9.8 ma non a quello esatto

    • @annacerbara4257
      @annacerbara4257 Рік тому

      Io, veramente, ero arrivata alla equazione
      k^3 - 3k + 1 = 0
      che non è evidentemente risolubile con Ruffini né per valori interi (il termine noto è 1), né per valori frazionari (il primo coefficiente è pure 1) quindi le soluzioni sono certamente irrazionali. E allora avrei continuato con lo studio della funzione associata cercando progressive approssimazioni dell'unico punto di intersezione con l'asse k compreso tra 0 e 1.
      Ho trovato molto interessante la formula di Cardano che non ricordavo, devo averla studiata una vita fa quando preparavo l'esame di abilitazione ma qui è ulteriormente sviluppata utilizzando la forma goniometrica dei numeri complessi etc.: insomma un bell'esercizio con un bel po' di matematica ... non mi fiderei di chi chiede problemi più difficili ... 😊

    • @GaetanoDiCaprio
      @GaetanoDiCaprio  Рік тому

      @@annacerbara4257 😃

    • @sergiocasavecchia5819
      @sergiocasavecchia5819 Рік тому

      Un esercizio oserei dire entusiasmante, pieno di spunti di riflessione !

  • @francescosmerilli5384
    @francescosmerilli5384 Рік тому

    Forza Tartaglia! Un giorno avrai giustizia, forse....

  • @Taxi1729
    @Taxi1729 Рік тому

    vogliamo esercizi un po' più difficili

  • @giuseppemerico1807
    @giuseppemerico1807 9 місяців тому

    Ingegneristicamete...mi basta memorizzare che se riempio una scodella (semisfera) al 65% dell'altezza....