Log equations worked exam question

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 32

  • @blackchicken2243
    @blackchicken2243 2 роки тому +4

    Thank you very much i have an exam tomorrow and hopefully I’ll do well

  • @ojasviagrawal3180
    @ojasviagrawal3180 5 років тому +11

    Thank you so much 😊
    Can you pls provide with some more questions of somewhat higher level
    They were really easy

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Ojasvi; What topics are you looking for? Another log example is ua-cam.com/video/_5RALX7_Ch4/v-deo.html but I guess that is too easy for you.

    • @ojasviagrawal3180
      @ojasviagrawal3180 5 років тому

      @@MathsWithJay some questions including rational inequalities and modulus in log

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Ojasvi; Can you give examples? Here are some simple inequalities: ua-cam.com/play/PLgQUIweMg9eIC4MQjWwUvFiiaPfOFYI7_.html

  • @jan-willemreens9010
    @jan-willemreens9010 2 роки тому

    ...Good day Miss Jay, After a thorough examination of the second problem, I would like to make a comment that it is INDEED important to look at the ORIGINAL EQUATION: log(2)(11-6x)=2log(2)(x-1)+3 for the determination of the restrictions for x: 11-6x>0 and x-1>0, with which finally x=3/2 is the only solution, and x=-1/4 becomes invalid. However, if instead of the original equation you now look at the algebraically manipulated equation: log(2)(11-6x)=log(2)[(x-1)^2]+3, then the restriction x-1>0 expires, with the result that next to x=3/2, x=-1/4 also becomes a valid solution! After all, the graph of y1=2log(2)(x-1)+3 is different from the graph of y2=log(2)[(x-1)^2]+3, while you actually only have used one of the valid log properties (laws) for logarithms: 2log(2)(x-1)+3=log(2)[(x-1)^2]+3. But in the end that makes a big difference in the outcome of the equation! So, one has to be very careful when setting the restrictions for x, and therefore only look back to the original equation, Miss Jay. To be sure, I also looked at both options graphically: 1) (the original situation) y3=log(2)(11-6x) with y1=2log(2)(x-1)+3 ---> (one intersection x=3/2), and 2) y3=log(2)(11-6x) with y2=log(2)[(x-1)^2]+3 ---> (two intersections x=3/2 and -1/4). Thank you for your (not too difficult?) presentation, Take good care, Jan-W p.s. At least one has to be aware of using the right restrictions, and therefore only looking at the original equation...

    • @MathsWithJay
      @MathsWithJay  2 роки тому +1

      Yes, it is essential to look back at the original equation when checking!

  • @c6ldass781
    @c6ldass781 2 роки тому

    I don't quite understand how to factor a polynomial like 8x² - 10x - 3 in a fast way

    • @MathsWithJay
      @MathsWithJay  2 роки тому

      See ua-cam.com/users/shortsFfD-bpOsmV4 or ua-cam.com/video/sMj1GAc3hAU/v-deo.html

  • @aanyaa1111
    @aanyaa1111 2 роки тому

    thank you so much! this video was really helpful :)! hopefully i'll do well on my log test tmr ahaha ;;

  • @alastairhart5308
    @alastairhart5308 2 роки тому

    Thank you, this helped consolidate my knowledge.

  • @gabrielkendall4349
    @gabrielkendall4349 Рік тому

    where does 11-6x go

  • @RhysTucker2603
    @RhysTucker2603 5 років тому +2

    thank you very much

  • @waffles1042
    @waffles1042 5 років тому +1

    nice man, i loved it

  • @cutegirl-cb9ol
    @cutegirl-cb9ol Рік тому

    Can't we just get rid of log2 and then say (11-6x)=2(x-1)+3

  • @astron-out4982
    @astron-out4982 6 років тому +1

    Thank you!!

  • @MelOkunbor
    @MelOkunbor 2 роки тому

    Thankyou so much!

  • @sohamarora7883
    @sohamarora7883 3 роки тому +1

    ok

  • @ankurkundu2530
    @ankurkundu2530 5 років тому

    It's very easy

    • @MathsWithJay
      @MathsWithJay  5 років тому +1

      @Ankur: Too easy?

    • @zecdi
      @zecdi Рік тому

      @@MathsWithJay too easy still 3 years later