Find Eigenvalues and Eigenvectors of a 2x2 Matrix

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 174

  • @vp4744
    @vp4744 6 років тому +32

    Thanks for explaining "eigen" things with what has to be the *clearest* and *fewest* words possible in both this and the next video about diagonalizing. I say that after watching a dozen other videos on this topic, including some with elaborate moving graphics and animated icons. Most needlessly confuse exposition of concepts for exposition of methods, which you have skillfully avoided. Thanks again.

  • @johnniemojo
    @johnniemojo 6 років тому +16

    A very clear explanation of the subject. Probably one of the clearest ones I've seen. Well done......

  • @gfarmer18
    @gfarmer18 4 роки тому +2

    This is the clearest explanation of Eigenvalues and Eigenvectors that I've seen. Showing the transformations on the graphs ties it all together. Thank you!

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      @G Hamilton: Thank you so much for this feedback - much appreciated!

  • @DatNguyen-py4zv
    @DatNguyen-py4zv 6 років тому +5

    Absolutely love your method of teaching! Your pace and showing by examples is what makes you stand out amongst other tutorials on UA-cam. Thank you.

    • @MathsWithJay
      @MathsWithJay  6 років тому

      Thank you so much for your wonderful feedback!

  • @dempsey3810
    @dempsey3810 3 місяці тому +1

    The best video I got to watch so far. Thank you so much! I was able to reapply your teachings to many different matrices and got the eigen values and vectors right. God bless you.

  • @treeobservation3089
    @treeobservation3089 3 роки тому +2

    Finally, I found a woman who explains maths at the level I am studying. Thankyou

  • @adorablewigglingbunnynoses2792
    @adorablewigglingbunnynoses2792 4 роки тому +2

    I don't know a thing about eigenvalues and eigenvectors and i am trying to learn and this is the best and easiest video i could find on this subject. I am glad it only had 1 example so i can re-watch this video as many times as i need to without feeling overwhelmed or confused or frustrated👍👍

  • @remitto8367
    @remitto8367 4 роки тому +2

    This is like the 6th video I have watched; I finally understand it (kind of). Thanks!

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      Glad it helped! If you're still unsure....do you have a question?

  • @guiray2000
    @guiray2000 6 років тому +1

    This series was one of the clearest and best ever. Thanks very much.

  • @123shim
    @123shim 4 роки тому

    Your videos are by far the best to explain Maths procedures ! No matter how many steps are involved, your explanation is clear and concise. (Level 2 OU student here!)
    Thank you ♥️

    • @MathsWithJay
      @MathsWithJay  4 роки тому +1

      Glad you like them, Sheema...I tutor on level 1 OU modules, and started this channel after making some of the screencasts for MST124.

    • @123shim
      @123shim 4 роки тому +1

      @@MathsWithJay I thought your voice was familiar and had read on one of your other videos that you were an OU tutor 😄

    • @madeya3768
      @madeya3768 3 роки тому

      @@MathsWithJay how do u get 2x-y = 0

    • @MathsWithJay
      @MathsWithJay  3 роки тому

      At what time in the video?

  • @vanclise8179
    @vanclise8179 3 роки тому

    Very clear explanation, in the sweetest voice, thanks a lot.

  • @parassharma105
    @parassharma105 5 років тому +4

    Thank you so much for all the effort & time you put into explaining all of this so clearly. Gonna learn a lot from your other videos as well. THANK YOU!

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @Paras Sharma: That's very kind of you...thank you!!

  • @icode4797
    @icode4797 6 років тому +4

    Thanks this was the best video that clearly explains the terms. Keep it up. You are doing a great job.

  • @harunamuhammadhamza3014
    @harunamuhammadhamza3014 4 роки тому

    this has to be the best video on this topic, thank you.

  • @s.sradon9782
    @s.sradon9782 3 місяці тому

    I'm in 3rd year of uni, this is extremely useful despite being an 8 year old video and will continue to be for atleast another 8 years.

    • @MathsWithJay
      @MathsWithJay  3 місяці тому

      Interesting...I wonder if some kind of AI will be more useful in 8 years time...

  • @sayem7002
    @sayem7002 4 роки тому

    I wish you I found you at the beginning of my semester. Thank you.

  • @dameo1355
    @dameo1355 4 роки тому

    You've made this concept to be so easy and clear in a short time....thank you very much

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      @Pauline Dametula: You're very welcome!

  • @eddiechen6389
    @eddiechen6389 2 роки тому

    very clear since you have explained why det(A - lmda * I) = 0, everything makes sense, many thanks!

    • @MathsWithJay
      @MathsWithJay  2 роки тому

      You're very welcome.... Thank you for your useful feedback.

  • @adrielroman3551
    @adrielroman3551 7 років тому +2

    Thank you for making this video. It helped me alot in my Vector Class :)

    • @MathsWithJay
      @MathsWithJay  7 років тому +1

      @Adriel That's great! Thank you for letting us know.

  • @Kerminshermin
    @Kerminshermin 3 роки тому

    THANK YOU SO MUCH
    You don't understand how much you've helped me. Thank you.

  • @Burner.Account..
    @Burner.Account.. 6 років тому +2

    I'm going through this and I can't be more confused. I managed to do the eigenvectors but all sources anywhere shows that you can basically place the ratio in any way, shape and form possible as long as the numbers are correct, even my textbook and an online vector calculator contradicts each other where for x=-y, you get [1:-1] from the book with [x:y] = [x:-x] = [1:-1] as it's logic, and [-1:1] from the calculator with [x:y] = [-y:y] = [-1:1]. And that's where I'm completely stuck as later parts that concerns differentials will produce drastically different answers if the modal matrix is different, which the modal matrix largely depends on how you present the eigenvectors which you can present it however way you like to.
    Would you mind to explain how is this possible and how can I use the right P matrix for further work? and how do you decide that lamda1 is -1 and lamda2 is 8, since the quadratic equation does not produce numbers in specific orders.

    • @MathsWithJay
      @MathsWithJay  6 років тому +1

      It doesn't matter which way round you choose lamda1 & lamda2, but this will affect the P. Have you seen the other relevant videos in ua-cam.com/play/PLgQUIweMg9eJP1QeCotIspOmwGUd8jibS.html ?

  • @thequiickbrownfox
    @thequiickbrownfox Місяць тому

    very clear explanation, after searching through a lot

  • @alfredackon3723
    @alfredackon3723 3 роки тому

    At 12:30 can the eigen vector be (-1,1) since x +y = 0 is the same as x= -y?

    • @MathsWithJay
      @MathsWithJay  3 роки тому

      Yes...there are an infinite number of eigenvectors that satisfy x + y = 0

  • @leoola4119
    @leoola4119 6 років тому +1

    Hi, why do you need to use the identity matrix in order to take the x outside the brackets?

    • @MathsWithJay
      @MathsWithJay  6 років тому +2

      @Leo: So that each term in the equation is a matrix

  • @salvadoribarra9485
    @salvadoribarra9485 8 років тому +1

    On 9:40 can the answer also be [1/2 1]? [6 -3 0 0] / 6 => [1 -1/2 0 0] => x1 = 1/2 x2 , let x2 be 1 and x1 will equal 1/2?

    • @MathsWithJay
      @MathsWithJay  8 років тому +2

      +calc hacks There are an infinite number of eigenvectors for each eigenvalue. To check if your solution works, just multiply it by the matrix and the eigenvalue - if they give the same answer, you know you have a correct eigenvector.

  • @zulfanfirdaus5133
    @zulfanfirdaus5133 3 роки тому

    in 9:33 why the eigenvector is 1 and 2? i dont understand.. can u explain more, please? anyway thankyou for sharing this video

    • @MathsWithJay
      @MathsWithJay  3 роки тому

      The important point is the relationship between x and y. You can choose ANY value for x, but then the y value is double the x value. x=1 is one of the simplest values to choose, but you could choose another value....what would y be if you choose to take x = 5?

    • @zulfanfirdaus5133
      @zulfanfirdaus5133 3 роки тому +1

      i understand, no need explanation, thx

  • @huniamfarhan4373
    @huniamfarhan4373 4 роки тому

    If the characteristic eq have complex roots then who we can find the eigenvectors

  • @lohchoonhong4508
    @lohchoonhong4508 6 років тому +1

    on 14.03, y=-x, therefore the eigenvector is [1 -1]. May I know if the eigenvector could be [-1 1] also coz I put x=-y?

    • @MathsWithJay
      @MathsWithJay  6 років тому

      I show AN eigenvector. Any multiple works too...your values are -1 times mine, so this works too. Note that you can check your eigenvector as I did with mine.

    • @lohchoonhong4508
      @lohchoonhong4508 6 років тому +1

      Noted. Thank you very much

  • @Jiglo
    @Jiglo 6 років тому +1

    How would it work for lambda ^2 - 2 (lambda) - 15 = 0? ????? PLEASE HELP.

    • @MathsWithJay
      @MathsWithJay  6 років тому

      You are looking for two integers that multiply to 15 and have a difference of 2. See ua-cam.com/video/sMj1GAc3hAU/v-deo.html for examples of factorising quadratics.

  • @johnlewis975
    @johnlewis975 6 років тому +1

    Many thanks. Your video is very helpful. Is there a formula for finding the characteristic equation of a 3x3 matrix and possibly a 4x4 matrix like the one we have for a 2x2 matrix? kindly help me with it if it exist.

    • @MathsWithJay
      @MathsWithJay  6 років тому

      Thank you, John. Have you seen ua-cam.com/video/j2B_vcp3tUQ/v-deo.html ?

  • @tanzimali9238
    @tanzimali9238 2 роки тому

    hi amazing vid quick question does it matter which lambda is which as I made my lambda 1 (8) and my lambda 2 (-1). because this does affect the eigenvector matrix u where you combine the left and right side.

    • @MathsWithJay
      @MathsWithJay  2 роки тому

      It doesn't matter which you chose as lamda 1 and lamda 2..Thanks for your feedback

  • @TheNetkrot
    @TheNetkrot 3 роки тому

    Thank you, this was clearing up everything I didn't understand about Eigenvalues and Eigenvectors... I have gone through lots of material trying to figure out what is was about and finally managed to understand this now ... thanks again.

    • @MathsWithJay
      @MathsWithJay  3 роки тому

      You're very welcome! Thank you for taking the time to give such detailed feedback - it is appreciated.

  • @petelok9969
    @petelok9969 4 роки тому

    Hi Jay, I've been applying the methodology to the rotation matrix:
    (0 - 1)(x) =(0)
    (1 0)(y) (0)
    Has eigenvalues, è =+/- 1.
    I can't seem to get sensible values for the eigenvector when è=1:
    -1x - 1y =0
    1x - 1y =0
    or when è=-1:
    1x - 1y =0
    1x +1y =0
    ... Basically x=y and x=-y
    Can you help?! 😬
    Peter

    • @MathsWithJay
      @MathsWithJay  4 роки тому

      The eigenvalues are i and -i...I can't understand what you've written for your eigenvalues - I'm seeing an e with an accent on it.

    • @petelok9969
      @petelok9969 4 роки тому

      @@MathsWithJay you're right the eigen values are +/-i. Does this mean that there cannot be any real eigenvalues in the 2D this 2D system . I wonder what would happen in the case of the rotation matrix in 3D with rotation purely about the z axis.

  • @itsclarencetong
    @itsclarencetong 6 років тому +1

    Thank you so much for your videos! It helped me a lot!

  • @Raoul2011x
    @Raoul2011x 7 років тому

    Should I be assuming the value of x as only 1 or can it be any value? I have an equation y+2z=0, and I rearranged it to y=-2z and assumed y as 1, the eigenvector came out as (1,-0.5). It does not match the solution in the book I am following. The solution is (2,-1)

    • @MathsWithJay
      @MathsWithJay  7 років тому +1

      @Rahul: When you find an eigenvector, the ratio is important. Doubling your numbers gives "the solution", so it looks like you are correct too.

    • @Raoul2011x
      @Raoul2011x 7 років тому +1

      Maths with Jay I tried checking it, and it works, thank you

    • @MathsWithJay
      @MathsWithJay  7 років тому

      Excellent....thank you for letting us know.

  • @rajatbanerjee3051
    @rajatbanerjee3051 4 роки тому

    Very well explained. Thank you.

  • @afaanali4337
    @afaanali4337 7 років тому +1

    very nice explanation...thanks a lot.
    can u upload lectures of complex variables including Taylors theorem and all.

  • @habushlynibra7666
    @habushlynibra7666 5 років тому +1

    Very simple and clear explanation thank you

  • @5621346
    @5621346 7 років тому +2

    great lecture, thank you!

    • @MathsWithJay
      @MathsWithJay  7 років тому

      Many thanks for your super feedback.

  • @gholamrezadar
    @gholamrezadar 3 роки тому

    Wow beautiful explanations thank you ♥️

  • @captaintariq6350
    @captaintariq6350 7 місяців тому

    I got the 2nd Eigen vector -1 and 1
    And it also satisfies the equation But I am confused which one is correct mine or yours 😢

    • @MathsWithJay
      @MathsWithJay  7 місяців тому +1

      They are both correct. Note that I have written "an" eigenvector, so any multiple of my answer is correct.

  • @conkyr1
    @conkyr1 7 років тому +1

    Very helpful,thanks!!

    • @MathsWithJay
      @MathsWithJay  7 років тому

      Many thanks for the great feedback.

  • @hemptg
    @hemptg 8 років тому +1

    Good lesson!

    • @MathsWithJay
      @MathsWithJay  8 років тому +1

      Thank you for your feedback; it's good to know that you are finding our screencasts useful.

  • @neel9137
    @neel9137 8 років тому

    is formula to find characteristic equation of 3*3 matrix?

    • @MathsWithJay
      @MathsWithJay  8 років тому

      It's simpler to do as shown here: ua-cam.com/video/j2B_vcp3tUQ/v-deo.html

  • @josephxavier2839
    @josephxavier2839 2 роки тому

    Class is very nice. But sound is not audible. Please increase a little. Thanks

  • @ninaesmad864
    @ninaesmad864 3 роки тому +1

    Where it came from the 2x-y=0

    • @MathsWithJay
      @MathsWithJay  3 роки тому +1

      At what time in the video?

    • @ninaesmad864
      @ninaesmad864 3 роки тому

      8:54 sir.
      Where does 2x-y=0 came from?

    • @NachosBaronessDK
      @NachosBaronessDK 2 роки тому

      @@MathsWithJay i can't eigher understand where it came from. at 8:54 in the video. how 6x-3y=0 can be 2x-y=0? i my head it's should be: 3 ( 2x-y) = 0 ?

    • @MathsWithJay
      @MathsWithJay  2 роки тому

      Yes, then divide both sides by 3

    • @NachosBaronessDK
      @NachosBaronessDK 2 роки тому

      @@MathsWithJay what math rule is that? Or do you where I can find more information about that? What is it called in English? Thank you so much in advance:)

  • @syedusamaqamar4044
    @syedusamaqamar4044 7 років тому

    can u give lecture normal form and canonial form matrixes?

  • @antonotieno6972
    @antonotieno6972 4 роки тому

    Thanks for taking away my worry

  • @ahmedtarek2749
    @ahmedtarek2749 8 років тому

    many thanks,i need a lecture about participation factor

  • @adorablewigglingbunnynoses2792
    @adorablewigglingbunnynoses2792 4 роки тому +1

    So who wants to calculate what happens to the point (5,4) like she suggested towards the end of this video? Anyone?

    • @MathsWithJay
      @MathsWithJay  4 роки тому +1

      @adorable wiggling bunny nose sugar high: Why not try it yourself?

    • @adorablewigglingbunnynoses2792
      @adorablewigglingbunnynoses2792 4 роки тому

      @@MathsWithJay i don't know what equation the point (5,4) is supposed to go into.

    • @MathsWithJay
      @MathsWithJay  4 роки тому +1

      Write down matrix A, then (5, 4) as a column vector, then multiply the matrix by the vector. The answer will be a column vector...you can then write this as the coordinates of a point. What point do you get?

    • @adorablewigglingbunnynoses2792
      @adorablewigglingbunnynoses2792 4 роки тому +1

      @@MathsWithJay Oh i thought i just put the point (5,4) in one of the y= equations. See i told you i didn't know what to do!😂😂😂😂😂😂

    • @adorablewigglingbunnynoses2792
      @adorablewigglingbunnynoses2792 4 роки тому

      @@MathsWithJay i am still trying to figure out what point i get in this problem from solving it.

  • @shadysidesun4867
    @shadysidesun4867 7 років тому +2

    THANK YOU VERY MUCH!

  • @muhammadseyab9032
    @muhammadseyab9032 8 років тому +2

    very nice keep it up thanks

  • @Salamanca-joro
    @Salamanca-joro 6 місяців тому

    I have exam in three hours about this topic , let's goooo!!!

    • @MathsWithJay
      @MathsWithJay  6 місяців тому

      Hope it went well!

    • @Salamanca-joro
      @Salamanca-joro 6 місяців тому

      @@MathsWithJay it went very well , we had question about this topic , and I did it easily thanks to your video!expecting my grade to be between 75 - 100 thanks again👍🏻🙌

  • @qysarahman
    @qysarahman 6 місяців тому

    very good video but I had to replay the video many times because there weren't any subtitles, and it's quite hard to catch up with your British accent, can you please add subtitles ? 🙏

    • @MathsWithJay
      @MathsWithJay  6 місяців тому +1

      Thank you for your feedback. Most of our recent videos have subtitles. Does it help to slow down the speed of the video?

    • @qysarahman
      @qysarahman 6 місяців тому

      @@MathsWithJay a bit but thankyou for responding

  • @samdavid704
    @samdavid704 5 років тому +2

    Anyone knows why -3 × -6 = -18???

    • @MathsWithJay
      @MathsWithJay  5 років тому +2

      @Sam: unlikely!!!

    • @aland315
      @aland315 5 років тому +2

      because she was doing the determinant theres a negative sign there, det(2x2 matrix)= ad - bc

    • @mrunal_1213.
      @mrunal_1213. 7 місяців тому

      +18

  • @sujanbadikana
    @sujanbadikana 5 років тому +2

    Tq soo muchh💓

  • @josepuga381
    @josepuga381 6 років тому +2

    What a legend :0

  • @elliotfarrell2556
    @elliotfarrell2556 7 років тому +1

    super helpful

  • @mosesoduor5103
    @mosesoduor5103 3 роки тому

    Thanks dia well understood

  • @hassansarjoon6743
    @hassansarjoon6743 7 років тому +1

    helpful, thank you

  • @kajalmishra8552
    @kajalmishra8552 2 роки тому

    Thank u for clarification

  • @fearmyshadow4685
    @fearmyshadow4685 5 місяців тому

    very helpfull thanks

  • @MohamedAbdallah-ue1kq
    @MohamedAbdallah-ue1kq 7 років тому +1

    VERY GOOD

    • @MathsWithJay
      @MathsWithJay  7 років тому +1

      Thanks so much for your excellent comment

  • @aaditsisodia8
    @aaditsisodia8 3 місяці тому

    5:45

    • @MathsWithJay
      @MathsWithJay  3 місяці тому

      ?

    • @aaditsisodia8
      @aaditsisodia8 3 місяці тому

      @@MathsWithJay ahh sorry. I just timestamped this for myself to come back to in the future!

    • @aaditsisodia8
      @aaditsisodia8 3 місяці тому

      @@MathsWithJay Also, amazing video, it's really helpful and concise. Thank you.

    • @MathsWithJay
      @MathsWithJay  3 місяці тому

      You're very welcome

  • @WarzoneWizard
    @WarzoneWizard 6 років тому +1

    The best.

  • @abbasof7920
    @abbasof7920 5 років тому

    I think you are switching the values of x and y!

    • @MathsWithJay
      @MathsWithJay  5 років тому

      @abbas sab: At what time in the video?

  • @emaal6097
    @emaal6097 8 років тому

    there is something wrong lamda1 =1, lamda2= -8.

    • @MathsWithJay
      @MathsWithJay  8 років тому +2

      Your answers are wrong...so watch the video to find the correct answers and to see how to check them.

  • @regann7227
    @regann7227 Місяць тому

    its 2am save me youtube video

  • @madenaarcher9051
    @madenaarcher9051 7 років тому

    This was helpful...but i still understand why the volume was sooo low...that wasnt cool

    • @clifftech8643
      @clifftech8643 5 років тому +1

      Yaäh the volume oops very low but it a nice explanation

  • @tombouie
    @tombouie 5 років тому

    Well Done, you started with (A -lamda I)x =0 and unknown lambda & x . Most start with knowning either lambda or x.
    For example Introduction to Eigenvalues and Eigenvectors - Part 1 ua-cam.com/video/G4N8vJpf7hM/v-deo.html

  • @Omprakash-wh4rb
    @Omprakash-wh4rb 4 роки тому +1

    😁😁😁🙏

  • @ggulled4735
    @ggulled4735 2 роки тому

    your wrong

  • @lightened6445
    @lightened6445 2 роки тому

    Why is it always the simplest ones lmao, why are these same equations when you put a specifi eigen value, if you are that lazy to do with different ones, do not do it at all.

  • @saitaro
    @saitaro 6 років тому +2

    Thank you very much!

  • @venomdedpol1179
    @venomdedpol1179 5 років тому +1

    Thank you so much!