Tutorial: Group delay

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 31

  • @iyusmaji
    @iyusmaji 11 років тому

    Thank you Dr. Ed Doering for the great and easy way of understanding of group delay. I want to highlight the importance of giving an example of group delay in physical matters, like you did on the very last slide. Wish you have a great life !

  • @rajsodhi
    @rajsodhi 4 роки тому

    Wow. I love how the algebra is instantly updated as you're explaining it. Great work!

  • @ilovecomputers
    @ilovecomputers 12 років тому +1

    A very concise and straight forward introduction to group delay. Thanks!

  • @RoseHulmanOnline
    @RoseHulmanOnline  11 років тому +1

    Great question! After some digging on this issue: Group delay is more precisely defined in terms of the *argument* (abbreviated "arg") of the complex exponential. Consequently when you write H(e^jω) in the form A(e^jω)e^j(arg), the "A" function can go negative as you correctly stated (and add a step discontinuity of plus/minus pi to the phase), but the "arg" function is independent of this discontinuity. At 6:15 I should have identified -2ω as "arg(H(e^jω)" instead of as the phase function.

  • @RoseHulmanOnline
    @RoseHulmanOnline  11 років тому +1

    Thanks for your kind remarks, glad to hear that you found the tutorial helpful!
    -- Ed D

  • @akashpatel5114
    @akashpatel5114 2 роки тому

    Very well explained and also good pace for the video

  • @车王贝塔
    @车王贝塔 7 років тому

    Way more better than my lecturer.

  • @salarkhan3282
    @salarkhan3282 5 років тому

    What is center of transient in 2nd example?

  • @erfanamkh7220
    @erfanamkh7220 Рік тому

    Good video and clarification on the comments. Thanks

  • @dobriloigiev5623
    @dobriloigiev5623 4 роки тому

    Best explanation out there. Thank you.

  • @indrashispowali
    @indrashispowali 3 роки тому

    I just don't understand your last explanation of the physical significance of T(w)=2samples . Would you consider elaborating the same ??

    • @RoseHulmanOnline
      @RoseHulmanOnline  3 роки тому +3

      Sure, try it this way: Suppose you apply an impulse function to a smoothing filter that has zero group delay. Further suppose the impulse response of the filter is 5 samples wide and symmetrical. If the impulse (a single non-zero sample) is located at time n=0 you will see that the output begins at n=-2 and ends at n=+2, that is, it is centered about the impulse. The filter smooths the impulse input (blurs/spreads it out) but does so without adding an additional delay. This sort of smoothing filter would be called "non-causal." The same smoothing action could be accomplished by a "causal" filter (output does not begin before the impulse is applied), too, but you will see the that the output must be delayed (that's the group delay calculation) so that the first non-zero output happens at n=0 instead of n=-2. Hope that helps!

  • @gkafen
    @gkafen 11 років тому

    Should the sum of exponentials not only be real-valued but also positive, in order to say that the phase of the signal is -2ω? Otherwise, any negative value in that sum should add phase to the system...

  • @jdeb0016
    @jdeb0016 10 років тому

    Thanks. The x[n] = u[n] example was very helpful.

  • @franklevasseur5930
    @franklevasseur5930 6 років тому

    You are a great teacher, thx a lot!

  • @patrickmullan8356
    @patrickmullan8356 9 років тому

    What is a transient, mentioned at the very end of this video?
    The "center" of the filter? Something like the "center" of the filter? (But then, why isn't it 2.5 for a filter of length 5?)

    • @26ernaveen
      @26ernaveen 9 років тому +2

      +Patrick Mullan Transient is the transient time of output signal before stead state i.e. 1. Given example is for discrete signal which exists only at integers time, Therefore 2.5 does not exist at all. For continuous case it would be 2.5. In given example there are 5 point 0,1,2,3,4, it is quite obvious that 2 is in center.

  • @hitmanLis
    @hitmanLis 8 років тому

    6:09 real values? how come?

    • @hectorandrespv
      @hectorandrespv 8 років тому

      Because you can express what is inside of the parenthesis as 1+2cos(w)+2cos(2w)

  • @cullensee7926
    @cullensee7926 2 роки тому

    Great video, thanks!

  • @NOMOMOMOMOMOM
    @NOMOMOMOMOMOM 8 років тому

    That was clear as hell! Thanks!

  • @Josh54152
    @Josh54152 11 років тому

    Very well done! Thank you so much!

  • @HT_Park
    @HT_Park 5 років тому

    Nice tutorial! Thank you.

  • @MrLouisGendron
    @MrLouisGendron 11 років тому

    Very good tutorial thank you.

  • @adi-hk4hb
    @adi-hk4hb 5 років тому

    Thank you very much sir.

  • @mquinteros
    @mquinteros 11 років тому

    Great Video!!!

  • @premopremo1
    @premopremo1 12 років тому

    Love you man!

  • @abhishekrankawat4332
    @abhishekrankawat4332 5 років тому

    Very good

  • @ΧρήστοςΜατζώρος
    @ΧρήστοςΜατζώρος 7 років тому

    Thank you!

  • @renweiliu8
    @renweiliu8 6 років тому

    thanks

  • @TheCireMC
    @TheCireMC 6 років тому

    Why did I go the Bradley. I should've went to Rose-Hulman