Paterson Primes (with 3Blue1Brown) - Numberphile

Поділитися
Вставка
  • Опубліковано 27 вер 2024
  • Grant Sanderson (from 3Blue1Brown) discusses the briefly brilliant discovery of Paterson Primes. More links & stuff in full description below ↓↓↓
    See all three videos in this series - Grant's Prime Pattern Trilogy: bit.ly/PrimePa...
    Grant's own false pattern video: • Researchers thought th...
    Grant's channel is 3Blue1Brown: / 3blue1brown
    More Grant on Numberphile: bit.ly/Grant_N...
    Grant on the Numberphile Podcast: • The Hope Diamond (with...
    With thanks to Michael Colognori for computing the big prime list.
    The Paterson Primes on OEIS: oeis.org/A065722
    Correction at 1:20 - 5 (not 17) is 11 in base 4, - still prime of course.
    And with thanks to Patrick Paterson - of course.
    Numberphile is supported by the Simons Laufer Mathematical Sciences Institute (formerly MSRI): bit.ly/MSRINumb...
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoun...
    And support from The Akamai Foundation - dedicated to encouraging the next generation of technology innovators and equitable access to STEM education - www.akamai.com...
    NUMBERPHILE
    Website: www.numberphile...
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberph...
    Videos by Brady Haran
    Patreon: / numberphile
    Numberphile T-Shirts and Merch: teespring.com/...
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanb...
    Sign up for (occasional) emails: eepurl.com/YdjL9
    Special thanks to our friend Jeff for the accommodation and filming space.

КОМЕНТАРІ • 381

  • @numberphile
    @numberphile  Рік тому +122

    Part 2 is at: ua-cam.com/video/NsjsLwYRW8o/v-deo.html --- And Grant's own false pattern video at: ua-cam.com/video/851U557j6HE/v-deo.html

    • @unbelievable961
      @unbelievable961 Рік тому +3

      Sir could you please tell me how and from where I can learn to code a program to check any conjecture or check any pattern in my laptop just like you...∞

    • @Einyen
      @Einyen Рік тому +3

      Fun fact: The factor 11 does not appear in your list, the first one is for prime: 9011 which is 2030303 = 11 * 379 * 487 in base 4.
      The factor 101 does not appear until prime 16992067 which is 1000310131003 = 79 * 101 * 125367857 in base 4.

    • @TheSummoner
      @TheSummoner Рік тому +5

      Part 3 when? 🥹

    • @arronviolin
      @arronviolin Рік тому +1

      .. can you just release the unedited video of part 3..?

  • @eyflfla
    @eyflfla Рік тому +595

    Patrick Paterson and his patented primes were a Parker precursor. He gave it a go, and got pretty close.

    • @TechSY730
      @TechSY730 Рік тому +43

      The scam bot got one thing right, that @elflfa does deserve congratulations for this comment. 😆 👍

    • @vigilantcosmicpenguin8721
      @vigilantcosmicpenguin8721 Рік тому +31

      "Parker" and "Paterson" both start with "Pa." I conjecture that there is a connection between the two.

    • @PrimalBeard
      @PrimalBeard Рік тому +10

      I read this in Parker's voice

    • @gogl0l386
      @gogl0l386 Рік тому +1

      So Matt even Parker Squared, making the concept of a Parker Square. Poor guy it never ends.

    • @Triantalex
      @Triantalex 8 місяців тому

      ??.

  • @steveb1243
    @steveb1243 Рік тому +667

    Whenever I see the word "prime" or the name "3blue1brown" in a Numberphile video, I feel the urge to watch immediately, so I dropped everything for this one. The traffic behind me can wait until I'm done.

    • @numberphile
      @numberphile  Рік тому +139

      ha ha

    • @Baldhu1
      @Baldhu1 Рік тому +23

      criminally underrated comment

    • @zzz1001ww
      @zzz1001ww Рік тому +19

      I'm a simple guy, I see 'prime', '3blue1brown' and 'Numberphile', I click :)

    • @ahmedyawar31
      @ahmedyawar31 Рік тому +16

      Bro I am waiting behind you 🙁

    • @yeet3673
      @yeet3673 Рік тому +5

      @@ahmedyawar31 lol

  • @edwardberryman9113
    @edwardberryman9113 Рік тому +49

    I love that as an aside Grant explained the rule for finding if a number is divisible by 3 or 9. I've been using that fact for almost two decades and had never thought to ask why it was true.

  • @Hepad_
    @Hepad_ Рік тому +54

    Makes me think of my 10 years old self, so proud of discovering that the hypothenuse of a 3 and 4 units sided right triangle is 5, and that it works for 6,8 and 10 too.

    • @word6344
      @word6344 Рік тому +3

      I remember being so proud of myself for finding out that it works for 30, 40, 50, as well as 300, 400, and 500, and 60, 80, 100 and 600, 800, 1000

  • @johnchessant3012
    @johnchessant3012 Рік тому +234

    None of the Paterson composite numbers shown in the video are divisible by 11. For those wondering, the first one is 9,011 -> 2,030,303 = 11 × 379 × 487.

    • @ChristopheSmet123321
      @ChristopheSmet123321 Рік тому +65

      Also, no coincidence that it lasts that long: divisibility by 11 in base 10 can be checked by looking at the alternating sum of the digits. The same happens for divisibility by 5 in base 4. So if the alternating sum in base 10 is zero, then the starting number was divisible by 5. As an example, 231 in base 10 is an 11-fold since 2-3+1=0, in base 4 the number is 32+12+1=45, a 5-fold. So this Paterson method can only give an 11-fold if the alternating sum is an 11-fold, but non-zero. Which takes a while, if you can only use 0, 1, 2 and 3.

    • @jkid1134
      @jkid1134 Рік тому +9

      I was absolutely wondering :) I was also wondering if there's a largest Patterson prime, but I suppose no one knows that

    • @beningram1811
      @beningram1811 Рік тому +10

      @@jkid1134 I imagine it's very likely that there is no largest Patterson prime. My reasoning is that there's no largest prime, and of those infinitely many primes, some, in base 4, would probably result in a larger prime. Then again, i was surprised by how low a quantity of the first 1000 primes churned out a Patterson prime, so maybe it does continue dwindling.

    • @mirador698
      @mirador698 Рік тому +5

      @@jkid1134 I assume that there are infinitely many Paterson primes.

    • @aditya95sriram
      @aditya95sriram Рік тому +3

      Thank you kind stranger :)

  • @Astromath
    @Astromath Рік тому +58

    Some questions that come to mind:
    - Are there infinitely many "Paterson primes"? (I do think so but can't think of a straightforward way of proving it rn)
    - How exactly does the ratio between "Paterson primes" and "non-Paterson primes" behave for larger and larger numbers?
    - Is there a longest consecutive run of "Paterson primes"? So, could it theoretically be all "Paterson primes" after a certain number? If so, from what number on is that?
    If not (which is probably more likely), what's the longest consecutive run of "Paterson primes" we know of?

    • @tempestaspraefert
      @tempestaspraefert Рік тому

      This is some numerical data on the distribution: ("primes below n as input", "number of input primes", "number of output primes", "ratio")
      2 0 0 0
      4 2 2 1.00000000000000
      8 4 4 1.00000000000000
      16 6 6 1.00000000000000
      32 11 10 0.909090909090909
      64 18 15 0.833333333333333
      128 31 24 0.774193548387097
      256 54 38 0.703703703703704
      512 97 58 0.597938144329897
      1024 172 97 0.563953488372093
      2048 309 157 0.508090614886731
      4096 564 244 0.432624113475177
      8192 1028 392 0.381322957198444
      16384 1900 633 0.333157894736842
      32768 3512 1049 0.298690205011390
      65536 6542 1788 0.273310914093549
      131072 12251 3048 0.248796016651702
      262144 23000 5375 0.233695652173913
      524288 43390 9506 0.219082737958055
      1048576 82025 16920 0.206278573605608
      2097152 155611 30351 0.195044052155696
      4194304 295947 54939 0.185637968960658
      8388608 564163 99811 0.176918727389070
      16777216 1077871 182365 0.169190005111929
      33554432 2063689 330601 0.160199041619159
      67108864 3957809 601667 0.152020221289102
      134217728 7603553 1102217 0.144960783465309
      268435456 14630843 2035882 0.139150013433949
      536870912 28192750 3763838 0.133503755398108

    • @want-diversecontent3887
      @want-diversecontent3887 Рік тому +13

      I tested all primes between 2 and 100000, and the ratio just seems to keep decreasing. It ended at about 0.3481377, but it doesn't seem like it has a reason to stop there.

    • @renyhp
      @renyhp Рік тому +1

      I also started thinking similar questions! Commenting to follow this thread

    • @want-diversecontent3887
      @want-diversecontent3887 Рік тому +8

      I am testing up to a million now, and it has already dropped to about 0.299

    • @Astromath
      @Astromath Рік тому +2

      @@want-diversecontent3887 Did you try plotting the ratio?

  • @andrewharrison8436
    @andrewharrison8436 Рік тому +233

    1) If you don't generate the hypothesis then you have no chance of getting a theorem.
    2) When you test a hypothesis you will get a deeper understanding. Even while disproving it.
    3) and it's fun.
    Thumbs up to all concerned.

    • @bluerizlagirl
      @bluerizlagirl Рік тому +8

      Indeed. Just the proof that the process generates numbers which are not multiples of 2, 3 or 5 is interesting enough in its own right!

    • @zeevkeane6280
      @zeevkeane6280 Рік тому +7

      Exactly, follow the null hypothesis to the end, you will learn, no matter what. That's what science is truly about.

    • @Triantalex
      @Triantalex 8 місяців тому

      ??.

  • @fuuryuuSKK
    @fuuryuuSKK Рік тому +53

    Oh hey, look at us breaking into the numberphile "prerelease vault"

    • @saberxebeck
      @saberxebeck Рік тому

      Are you a time traveler?

    • @eldhomarkose8330
      @eldhomarkose8330 Рік тому

      @@saberxebeck patreon

    • @fuuryuuSKK
      @fuuryuuSKK Рік тому +2

      @@eldhomarkose8330 I am in fact not a Patron, I got here via the link at the end of Grant's latest video.

    • @eldhomarkose8330
      @eldhomarkose8330 Рік тому

      @@fuuryuuSKK okay

  • @vigilantcosmicpenguin8721
    @vigilantcosmicpenguin8721 Рік тому +8

    I'm jealous of Grant for having had friends like that in high school, who could just talk about nerdy math stuff. That's the coolest kind of kid.

  • @themathhatter5290
    @themathhatter5290 Рік тому +11

    After some thought, I've come up with an extension to Paterson Primes.
    Consider a set of primes {p1,p2...pn} and a small base A. To find a larger base B such that, when you take a prime in base A and interpret it in base B, will not divide any of the primes in the set, B must be subject to the following conditions: if a prime from the set p is larger than A, B=k*p for some natural number k, or in general, A=B (mod p).
    Let's do a small example. For the set {2,3,5,7}, and starting base 4, B must be a multiple of 2, one more than a multiple of three (which combine to require B is congruent to four mod six), either have a residue of four mod five or be a multiple of five, and either have a residue of four mod seven or be a multiple of seven. The smallest B which satisfies these conditions is 70. Thus, if you write the primes in base four and interpret them as base 70, you can be ensured that the resulting numbers will not be divisible by 2,3,5, or 7, which is neat, but far less elegant than P. Paterson's original result.

  • @the_box
    @the_box Рік тому +6

    So much editing for part 3. I bet it's going to be amazing!

  • @konstantinrebrov675
    @konstantinrebrov675 Рік тому +5

    I really enjoy the work of 3Blue1Brown. He has a way of explaining things that just intuitively makes sense.

  • @mebamme
    @mebamme Рік тому +34

    So what's the longest known "Paterson chain" (i.e. repeatedly plugging in the result to get another prime)? Will all chains eventually end?

    • @numberphile
      @numberphile  Рік тому +35

      This is a question that MUST be answered!

    • @l.3ok
      @l.3ok Рік тому +5

      2 and 3 are the longest ones 😅

    • @themathhatter5290
      @themathhatter5290 Рік тому +5

      I feel like it's almost certain all chains will end, because there's no polynomial that can only produce primes, and I don't think any recurrence formula could either. I have a feeling the longest chain could be six, if the remainders cycle mod 7.

    • @ragnkja
      @ragnkja Рік тому +1

      @@l.3ok
      2 and 3 are loops, not chains.

    • @Jisatsu
      @Jisatsu Рік тому +3

      5 is actually pretty long:
      5 -> 11 -> 23 -> 113 -> 1301 -> 110111, 6 steps
      I'm curious if there is a 7 step number or if all other numbers are tied or below

  • @cvoisineaddis
    @cvoisineaddis Рік тому +1

    Grant's eloquence and conveyance of mathematical principles is near unmatched.

  • @exoplanet11
    @exoplanet11 9 місяців тому +1

    5:00 I've used the "add the digits" trick to check for divisibility by 3 for years...but never knew why it worked.

  • @AngryArmadillo
    @AngryArmadillo Рік тому +3

    I feel like we have definitely observed an increase in Grady’s mathematical abilities/confidence over the years of him conducting all these wonderful interviews. Love to see it!

  • @rajeevk440
    @rajeevk440 Рік тому +1

    Waited for this collab for ages.

  • @HonkeyKongLive
    @HonkeyKongLive 8 місяців тому +1

    Im imagining someone using the biggest discovered Mersenne prime and then stumbling upon a new prime by pure luck.

  • @lynk_1240
    @lynk_1240 Рік тому +3

    This begs these questions though: What is the longest string of Patterson Primes? (A string being a prime number goes in, and a prime number comes out as the seed for the next Patterson Prime) Does it happen in the low numbers? Does it exist in the 'big' numbers? Is there an infinitely long string of them? are there an arbitrarily infinite number of infinite Patterson Prime strings?

  • @shogun_1154
    @shogun_1154 Рік тому +3

    Grant crushes the math problems with his biceps

  • @15october91
    @15october91 Рік тому +2

    I love 3Blue1Brown ❤

  • @Jacopo.Sormani
    @Jacopo.Sormani Рік тому +7

    Bonus Numberphile video with 3b1b?!?😍😍

  • @theantonlulz
    @theantonlulz Рік тому +5

    Not only is Grant one of the greatest math educators out there today, but he's also getting hella swole.

    • @MaryamMaqdisi
      @MaryamMaqdisi Рік тому +2

      Yeah I love his videos to teach myself things but I didn’t think he’d be so conventionally attractive lol

    • @berber-zb3jr
      @berber-zb3jr Рік тому

      Ikrrrr

  • @caremengema.1.866
    @caremengema.1.866 Рік тому +2

    i actually discovered this while I was messing around during math class. all the primes that i input seemed to output a bigger prime, so I was disappointed to realise after checking on google that not all of them were primes

  • @Vaaaaadim
    @Vaaaaadim Рік тому +5

    🧑‍💻don't mind me just haxoring into the vault of unreleased vids.
    FYI I got here from 3B1B's latest vid, endcard linked to this vid.

  • @nnaammuuss
    @nnaammuuss Рік тому

    A reasonable conjecture would be: given any m>n positive, there exists a prime p such that the n-ary expression of p interpreted as m-ary, is not a prime.

  • @wesleydeng71
    @wesleydeng71 Рік тому +3

    On top of 2, 3, 5, there are no 11s in the factors as well - because any number divisible by 5 in base 10 is divisible by 11 when converted into base 4 (since 5a = 4a+a = aa in base 4).

  • @styleisaweapon
    @styleisaweapon Рік тому +8

    There very much might be a mod 4 or mod 8 aspect to primes, since there IS one for the bijective multipliers within mod (2^n) spaces .. such that if x*y = 1 then the 4th bit ("eights place") of the binary expansion of x is not equal the 4th bit of the binary expansion of y .. always .. a fact used to calculate modular inverses faster than newton

    • @styleisaweapon
      @styleisaweapon Рік тому +1

      to be more specific, for a given x, its 2^n modular inverse y will always be the same in the first 3 bits (ones, twos, and fours places) and always be different in the 4th (eights place) .. while after that, it depends

  • @yoloswaggins2161
    @yoloswaggins2161 Рік тому +10

    Just like for 3 there's a divisibility rule for 7 that you can use on 1211. Since 10 is 3 mod 7 then 10^2 is 9 = 2 mod 7. So you have 12 * 2 + 11 mod 7 -> 5 * 2 + 4 = 14 = 0 mod 7.

    • @ckq
      @ckq Рік тому +4

      Or just subtract twice the last digit:
      1211 => 121-2 = 119 => 18-11 = 7

  • @Hooeylewissukz
    @Hooeylewissukz Рік тому +5

    Would be interesting to see whats the longest recursive chain of paterson primes you can generate.

    • @jonathansperry7974
      @jonathansperry7974 Рік тому

      Aside from the trivial infinite chains (primes less than 4), I have the same question.

    • @jonathansperry7974
      @jonathansperry7974 Рік тому +1

      The longest I've found so far start with 5, 29, and 73. These end at 1301, 200133233 and 10301133301033, respectively. I've checked all the starting primes below 2500.
      Update: Checking the other comments, chains with one more number (but maybe not two) exist. But the smallest starts with a 9-digit prime, so I'm done.

  • @henninghoefer
    @henninghoefer Рік тому

    Grant is simply amazing at explaining things and Brady (almost) always asks the right questions - Love this video, wish I could upvote it more than once!

  • @mamamheus7751
    @mamamheus7751 Рік тому +20

    So a schoolkid came up with that idea? Doesn't matter that it doesn't hold eventually, that was smart thinking! I thought I was doing well as an adult for having come across the divisible by 3 rule myself. (I also figured out whether a number can be divided by 11 too, so I call that a win! 😜)
    We weren't taught anything like this at school (40+ years ago). Obviously we were taught about primes and how to do "long division" (which I promptly forgot after realising that writing it out like a fraction and dividing that way was far simpler and quicker!), and I have the vaguest memories of binary - this was when computers were being coded using punch cards. Only the really smart kids got to do an O level in computing, and they had to go once a week to the only school in the region to have a computer. Binary was of "no use" to anyone who wasn't going to go into STEM subjects. Actually, they didn't even have an acronym back then lol.
    We didn't even have calculators. I still have my "log book" with the charts of logarithms, cos, sin, tan etc, squares & roots and yet more (can use most of them still if I need to. Just...) My little sister, doing her exams 2 years after me, was in the first year to be allowed to use calculators. Us "oldies" were horrified by the "cheating" 😂.
    I can still do quite quick mental arithmetic (that was walloped into us in primary, especially our times tables!), including area, volume (unless it involves π, then I need paper, pen and - if I'm not using my calculator, which I usually do now - the log book), percentages and the like. Basically, if it's arithmetic based, I'm hot. One step beyond anything I'm ever likely to use in "real life", I'm clueless! 🤷 To be fair, I got a certificate in mathematics from my uni as an adult, and that was hard work, but I've forgotten everything except the quadratic equation formula (if I didn't already know it). A bit of revision and I'd be great with statistics again - I love playing with numbers. It's just remembering equations and which ones to use when that gets me. I only understand Pythagoras' theorem because of an old joke about fat squaws and a hippopotamus hide. Don't ask, it was barely acceptable in the 70s (even as a kid I squirmed) but it did teach me how to do that!
    All in all, I'm trying to say how darned impressed I am by that chap as a youngster. I hope he's gone on to success in whatever he does now.

    • @Shortstuffjo
      @Shortstuffjo Рік тому +1

      Once you've mentioned the joke, convention states that no matter how acceptable it is or isn't, you have to tell it!

  • @jafarm4443
    @jafarm4443 Рік тому

    endgame: We had the best crossover ever!
    Numperphile and 3Brown1Blue: Hold my brown sheet, please!

  • @bluerizlagirl
    @bluerizlagirl Рік тому

    Yes, indeed. You have to be very careful if you think you have found a pattern, because there is so much room for coincidence. Always look for counter-examples!
    My favourite way to visualise the connection between the cross-sums and divisibility is this:
    1000 * a + 100 * b + 10 * c + d
    = 999 * a + a + 99 * b + b + 9 * c + c + d
    = [an obvious multiple of 9] + a + b + c + d
    64 * a + 16 * b + 4 * c + d
    = 63 * a + a + 15 * b + b + 3 * c + c + d
    = [an obvious multiple of 3] + a + b + c + d
    In general, the difference between a base-N number and its cross-sum is a multiple of N-1.

  • @sephalon1
    @sephalon1 Рік тому +1

    Okay, we need Neil Sloane to get to work finding the longest string of Patterson Primes he can. The rule is: start with a seed prime, do the Patterson Conversion, and if it's prime, convert that, and so on until you run into a composite. What's the largest number you can find that can be reached this way?

  • @lucas.cardoso
    @lucas.cardoso Рік тому +3

    So there are two possibilities for the result: either it's a Paterson Prime, or it's a Parker Prime 😆

  • @jlehrer
    @jlehrer Рік тому +1

    There’s a mistake at 1:17 in the video. It says 17 is “11” in base 4, but you were converting 5 to base 4 at the time.

  • @lapiscarrot3557
    @lapiscarrot3557 Рік тому +1

    1:40 Seeing the scrolling stop just before 31 was pretty funny

  • @Tyler-yy5ds
    @Tyler-yy5ds Рік тому +7

    a + b (mod 3) = a (mod 3) + b (mod 3) isn't strictly true. You still have to mod it again at the end. For example, 2 + 2 (mod 3) is not equal to 2 (mod 3) + 2 (mod 3), which would equal 4.

    • @m.h.6470
      @m.h.6470 Рік тому

      My thought as well!

    • @hebl47
      @hebl47 Рік тому

      I think it should be:
      (a (mod 3) + b (mod 3)) (mod 3)

    • @m.h.6470
      @m.h.6470 Рік тому

      @@hebl47 in theory yes, but that would defeat the point, as you needlessly do 3 operations now, instead of 1.

    • @hebl47
      @hebl47 Рік тому +1

      @@m.h.6470 What else is math if not theory? You have to be precise in phrasing your functions. And doing 3 easy operations instead of one hard is still a win.

    • @m.h.6470
      @m.h.6470 Рік тому

      @@hebl47 I would postulate, that - unless you work with an incredibly large number - you exchange 3 easy against 1 barely medium operation.

  • @delofon
    @delofon Рік тому +6

    1:15 Whoops! Editing mistake.

  • @Rialagma
    @Rialagma Рік тому

    As soon as I see a video with the love of my lif- I mean 3blue1brown I have to click immediately

  • @spacefreedom
    @spacefreedom 7 місяців тому +3

    I come from the “ pattern fool ya”

  •  Рік тому

    Finally, a worthy opponent for the venerable Parker Square!

  • @prostatecancergaming9531
    @prostatecancergaming9531 Рік тому +5

    A numberphile and a 3b1b video on the same day?! This week can’t get better

  • @peterandersson3812
    @peterandersson3812 Рік тому

    Brady and Grant collaborating again: great! 👏🏻

  • @HanabiraKage
    @HanabiraKage Рік тому

    Even if it were foolproof, it still wouldn't be a very useful test of primality for the number you started with because you'll have to know if the larger, more "difficult" number is prime or not. As a way to generate primes from a known prime though, it would be pretty great.

  • @dylanparker130
    @dylanparker130 Рік тому +1

    This was so much fun!

  • @RobinSylveoff
    @RobinSylveoff Рік тому +1

    The Patrick Paterson Patented Procedure for Procuring Primes

  • @curtiswfranks
    @curtiswfranks Рік тому +1

    How do the lengths of unbroken Paterson prime chains behave as the value of the initial term increases? What is the limsup thereof?

  • @WilliamWizer
    @WilliamWizer Рік тому +2

    I do have one question about this.
    would it be possible to find a base that improves this method so it excludes 2,3,5 and 7?
    I doubt it. but I had to ask since there's a chance that it exists.

  • @btf_flotsam478
    @btf_flotsam478 Рік тому

    By the way, you said it doesn't have the immunity from 11, but the divisibility test for 11 implies that having the larger number divisible by 11 requires either at least 9011 (with the larger number equal to 2030303) or for the larger number to be divisible by 5. (If you can't see why, remember that 5 is 11 base 4).

  • @fep_ptcp883
    @fep_ptcp883 Рік тому +3

    I love 3 blue 1 brown, especially as it was a spinoff of 2 girls 1 cup

  • @zaco-km3su
    @zaco-km3su Рік тому

    This is more personal. I like it.

  • @rosiefay7283
    @rosiefay7283 Рік тому +1

    7:07 I think there is almost immunity from 11. Let's say s is the digit string which is the base-4 representation of p and the base-10 representation of q. Sum those digits that are in s's odd places; sum those digits that are in s's even places; let d be the difference between those two sums. If 11 divides q, then 11 also divides d.
    Now if d happens to be 0, then (by a similar argument) 5 divides p. 11 is indeed a Paterson prime produced from 5. But you'll only get a Paterson pseudoprime divisible by 11 if d is divisible by 11. And it takes a few digits for that to happen. The first example is 2030303=11*379*487, which comes from 9011.

  • @hcsomething
    @hcsomething Рік тому +1

    Seems more like "The Patrick Paterson Patented Process for Producing Primes" to me.

  • @Scrolte6174
    @Scrolte6174 Рік тому +1

    1:15 *ERROR!* They left the 17 there without even changing it to a 5💀

  • @giass8399
    @giass8399 Рік тому

    I don't know if anybody has pointed that out already, but there's a mistake @1:16, they are talking about "5", but the video is still showing "17" from the previous example.

  • @treyhibbard
    @treyhibbard Рік тому +5

    this comment proves i reached the end of the 3b1b video

  • @jyosongurung5583
    @jyosongurung5583 Рік тому

    I have an estimation off the ‘prime guesser’ it’s (n^(n+1))-ceil(n/2) if contains 7 it’s probably prime (except 5 it doesn’t work)

  • @TheMADGUY50
    @TheMADGUY50 Рік тому

    People: *Invents numbers*
    Also people: Bah gawd, the numbers.

  • @tbird81
    @tbird81 Рік тому +2

    It's good how the modern nerd hits the gym now.

  • @captainsnake8515
    @captainsnake8515 Рік тому +8

    Woah, am I supposed to be here?

    • @delofon
      @delofon Рік тому

      what if grant trolled brady

  • @Skytalez
    @Skytalez Рік тому

    It makes me wonder if there are some number that used in the please of four in this algorithm you get more prime numbers?🤔

  • @Veptis
    @Veptis Рік тому

    So some of the numberphile videos with Ben are shot at Brady's place. But these seem to be over at Grants.

  • @pepebriguglio6125
    @pepebriguglio6125 Рік тому

    Why do both PPs and composite numbers appear in such significantly strong waves, even at very high input values?
    At lower input values, waves of successive composite outputs seem significant.
    And at higher input values, waves of successive PPs still keep coming surprisingly frequently.

  • @ND62511
    @ND62511 Рік тому +2

    Got here early from the new 3B1B vid, it seems!

  • @sdspivey
    @sdspivey Рік тому

    I did this for decimal to binary a few years ago and discovered a primality test. Turns out it Fermat had already found it.

  • @ragnkja
    @ragnkja Рік тому +1

    The strong law of small numbers is strong here.

  • @aradhyajain5355
    @aradhyajain5355 Рік тому +2

    Theorem #221 - To prove that there are an infinite number of Paterson primes.
    The proof is trivial and is left up to the reader

  • @d4slaimless
    @d4slaimless Рік тому

    What is the music in the end? Shazam seems to think it is Anton Ishutin - All I Can See. But I'd love to have the exact version that in this video.

  • @bighammer3464
    @bighammer3464 Рік тому

    Dam, Grant held a grudge on Patrick for so long that he made a math video to make fun of him

  • @gtheofanopoulos
    @gtheofanopoulos 9 місяців тому

    9:50 Paterson is Cameron Frye from Ferris Bueller's Day Off

  • @JaniLaaksonen91
    @JaniLaaksonen91 Рік тому

    So a Paterson prime is a bit like Parker square, looks perfect at first glance.

    • @JaniLaaksonen91
      @JaniLaaksonen91 Рік тому

      damn, I didn't scroll far enough. Someone had beat me to the joke.

  • @TheMarbleousMarbler
    @TheMarbleousMarbler Рік тому +1

    Do we know if there are infinitely many Paterson primes?

  • @Snowflake_tv
    @Snowflake_tv Рік тому

    Is a specific BaseNumberSystem forbidding us to think in different way? The reason why I ask is because I've seen the movie that says our language system forbids us to think out of the language.
    So, used language is matching to our decimal basicnumbersystem, my opinion.

    • @bsharpmajorscale
      @bsharpmajorscale Рік тому

      I wonder how one would transfer thus idea over to something like the surreal numbers?

  • @rogercarl3969
    @rogercarl3969 Рік тому

    Can we talk to the now famous Patrick Paterson? Would like to know more to see if this inquisitive young man is doing well.

  • @Lashb1ade
    @Lashb1ade Рік тому

    The Patrick Patterson Patented Process for Producing Progressively Prodigious Primes.

  • @rhoddryice5412
    @rhoddryice5412 Рік тому

    So which prime starts the longest”Paterson Prime Path”

  • @thomasrosebrough9062
    @thomasrosebrough9062 Рік тому

    Fascinating and now I'm wondering about the relationships between other bases. Is there any base for which this holds? Or a base for which the list of eliminated factors goes much higher?
    Might have to go write some code...

  • @TymexComputing
    @TymexComputing Рік тому

    I am sure Marsenne got one Paterson in his conduct:)

  • @minor_edit
    @minor_edit Рік тому +2

    Patternsome Paterson

  • @MattKoski
    @MattKoski Рік тому

    What is the longest chain of prime Paterson primes? Are there any infinite chains? Are there no infinite chains, but also no longest chain?

  • @limbridk
    @limbridk Рік тому

    How about plotting the currently biggest primes, into this rule? Will we be lucky? Do even bigger primes pop out?

  •  Рік тому

    Evolution gave us brains made for pattern recognition (and by "us", I don't mean only humans). And because it's evolution, it also means our brained are "tuned" for "useful" (evolutionnary advantageous) pattern recognition. We love patterns. What we call beauty is mostly made of patterns for which our brain is well-tuned. And part of those beautiful patterns are mathematical patterns... It seems that's why we are so bad at randomness, and so easily convinced we've found yet another pattern ^^

  • @thousandemon
    @thousandemon Рік тому

    Are there any larger primes that will never appear as prime factors of a numbers that this method produces?

  • @teddy4271
    @teddy4271 Рік тому

    the graphic a 1:20 appears to be claiming that 17 is equal to 4 + 1
    I suspect this is not true

  • @Alexandros.Apeirwtan
    @Alexandros.Apeirwtan Рік тому

    I highlight one mistake at 1:19. You write 17 base 4 equals 11 . But you mean 5 base 4 equals 11

  • @yeet3673
    @yeet3673 Рік тому

    Lol... like we don't all already know/love/subscribe to Grant. : ) give Ben a shout out too!.. he has his own YT.. I was soooo happy when I discovered that.

  • @zathrasyes1287
    @zathrasyes1287 Рік тому

    Great cliffhanger.

  • @jacobritter3590
    @jacobritter3590 Рік тому

    1:17 typo i believe 17 in base 4 is 101 not 11

  • @EinChris75
    @EinChris75 Рік тому +1

    I take from the video: Why does that divisible by 3 "trick" work.

  • @alexweinberger8925
    @alexweinberger8925 Рік тому

    3b1b video and NP video in one day!

  • @angst_
    @angst_ Рік тому

    I want to see the primes graphed out as their frequency. Maybe the larger the number, the more likely it is to have more divisors? Sooo. It probably won't ever stop, but I wonder if it tapers off to near 0?

    • @jameshart2622
      @jameshart2622 Рік тому

      Actually the density of primes as their size increases is well-known. Your intuition is correct; the density drops and approaches zero---but is always non-zero.

  • @nicholasstone1826
    @nicholasstone1826 Рік тому

    Now i want to know how long a string of primes you can generate by flipping back and forth before you hit a composite number.

  • @codycast
    @codycast Рік тому

    1:00 I’m wondering what caused him to even try this.

  • @gordslater
    @gordslater Рік тому +1

    I'm lucky enought to have a constant named after me.
    Since I'm shit at maths, it's the Number 2

  • @mirador698
    @mirador698 Рік тому

    Can one make a Parker square with Paterson primes? 🤔

  • @wchenful
    @wchenful Рік тому +1

    A real Parker Square of a system if you ask me.

    • @oz_jones
      @oz_jones Місяць тому

      A Parker precursor

  • @orsonzedd
    @orsonzedd Рік тому

    What's the biggest chain and are all chains finite?