An Integration Conundrum - Numberphile

Поділитися
Вставка
  • Опубліковано 18 жов 2022
  • Featuring Ben Sparks doing some calculus. See brilliant.org/numberphile for Brilliant and get 20% off their premium service (episode sponsor)
    More links & stuff in full description below ↓↓↓
    Ben Sparks on the Numberphile Podcast: • The Happy Twin (with B...
    More Ben Sparks on Numberphile: bit.ly/Sparks_Playlist
    Ben's website: www.bensparks.co.uk
    Ben's UA-cam channel: / @sparksmaths
    Numberphile is supported by the Simons Laufer Mathematical Sciences Institute (formerly MSRI): bit.ly/MSRINumberphile
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoundation.org/outr...
    And support from The Akamai Foundation - dedicated to encouraging the next generation of technology innovators and equitable access to STEM education - www.akamai.com/company/corpor...
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Videos by Brady Haran
    Patreon: / numberphile
    Numberphile T-Shirts and Merch: teespring.com/stores/numberphile
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
  • Наука та технологія

КОМЕНТАРІ • 484

  • @Bodyknock
    @Bodyknock Рік тому +412

    For anybody having trouble understanding integration by parts, you can remember it by keeping in mind it's just the reverse of the product rule for derivatives. That is, the product rule says
    (f(x)g(x))' = f(x)g'(x) + f'(x)g(x)
    But taking the anti-derivative of both sides you get
    f(x)g(x) = ∫f(x)g'(x) + ∫f'(x)g(x) + c
    If you shift it around you then get the integration by parts formula
    ∫f(x)g'(x) = f(x)g(x) - ∫f'(x)g(x) + c
    So in the video, for instance, you have f(x) = sin(x) and g'(x) = cos(x) and go from there.

    • @loose4bet
      @loose4bet Рік тому +22

      I haven't worked with integral for 20 year. Thanks for reminding. It's easier for me to remember this process than the rule itself.

    • @earthwormscrawl
      @earthwormscrawl Рік тому +13

      @@loose4bet 40 years here. But it's amazing how much sense it makes even with a thick coat of rust on my technique.

    • @mydroid2791
      @mydroid2791 Рік тому +6

      So why didn't Ben just use u=sin(x), du=cos(x)dx and write the integral as §udu = (u^2)/2 ?
      It bypasses the extra bits of integration by parts.
      @sparksmath

    • @PeterBarnes2
      @PeterBarnes2 Рік тому +8

      @@mydroid2791 That's the other two techniques in the middle, which goes off of the chain rule, rather than the product rule.
      He's generalized it to include power rule, where he's written u^1 = (sin(x))^1, du/dx = cos(x), and equivalently u^1 = (cos(x))^1, du/dx = -sin(x), except that he went about it in a roundabout way by pretending not to know the coefficient in front.
      That coefficient can always be determined, it's just the reciprocal of 1 more than the power 'u' is raised to; so here it's u^1, thus the constant is 1/(1+1) = 1/2. That should be familiar, being just the power rule for integration.
      Then a minus sign which instead comes from du/dx.
      (If du/dx itself had a different coefficient than -1, for example maybe 3/2, you should remember to apply the reciprocal of that coefficient, 2/3 rather than 3/2 for example, because the du/dx is telling you what you need, not necessarily what you have.
      Most rigorously, you do the trick where you multiply and divide by some number at the same time, such that, after moving those coefficients around, you see exactly du/dx on the inside. When the integration is finished, it will happen that you're left with just the reciprocal of what you needed for du/dx [multiplied along with the coefficient from the power rule and anything you might've started with].)

    • @robertlunderwood
      @robertlunderwood Рік тому +4

      I never thought about integration by parts that way. But it makes total sense.

  • @ZachGatesHere
    @ZachGatesHere Рік тому +515

    Ben is the unsung hero of this channel. Dude is incredible at opening your mind about math we're already familiar with

    • @cjward81
      @cjward81 Рік тому +9

      He is brilliant. A super communicator and always such enthusiasm 😊

    • @aceman0000099
      @aceman0000099 Рік тому +1

      I actually went through the third ring of Dijarmha and reached the eternal light of Nurrzhenzhis by watching this on LSD. opening my mind is an understatement.

    • @PC_Simo
      @PC_Simo Рік тому +2

      @@aceman0000099 I’ve watched a lot of these on nutmeg; so, I can *_KINDA_* feel, where you’re coming from 😵‍💫.

    •  Рік тому +1

      @Zach Gates True and beautifully motivated.

    • @bugsman1
      @bugsman1 Рік тому +2

      Yes, Love love Ben!

  • @stefanosilvestri89
    @stefanosilvestri89 Рік тому +83

    i have given this "conundrum" in every calculus class i taught. Most students tended not to have a problem with it, but rather they were entertained. The few who struggled afterwards seemed like something finally clicked. By this i don't mean my students were all aces in calculus, just that they were a little more clear on the meaning of indefinite integrals.
    happy to see this "conundrum" appear on Numberphile.

    • @therealax6
      @therealax6 Рік тому +1

      What I like about this particular example is that the meaning of the constant becomes obvious. (Replace (cos x)² with 1 - (sin x)² and expand out, and you get the other integral with a +1 term - the (c + 1) terms group into a new constant.) It's something I wish I had been taught instead of having to figure it out, although figuring out the meaning of the +c was interesting in itself.

  • @smartereveryday
    @smartereveryday Рік тому +178

    Fantastic video. I’ve actually been struggling with this integral for an upcoming test. Very timely!

    • @SparksMaths
      @SparksMaths Рік тому +7

      Glad to be of service!

    • @conradcox4371
      @conradcox4371 Рік тому +11

      Destin doing a level maths???

    • @wChris_
      @wChris_ Рік тому +1

      well i could have used it a few month back when i had my calculus exam!

    • @Triantalex
      @Triantalex 5 місяців тому

      ??.

  • @greensombrero3641
    @greensombrero3641 Рік тому +306

    integration is an interesting area

  • @vincentpelletier57
    @vincentpelletier57 Рік тому +192

    I think it would have been informative to also discuss that since cos(2x) = cos²(x) - sin²(x) and cos²(x) + sin²(x) = 1, then you can work out that cos(2x) = 2cos²(x) - 1 = 1 - 2sin²(x), so that the 3 answers are indeed identical up to a constant [ (-1/4)cos(2x) is (-1/2)cos²(x) plus a constant and is (1/2)sin²(x) plus some other constant, both absorbed in the undefined constants in the answers].
    It may also have helped to label the constants c1, c2, c3 and c4, to explicitly say they are not necessarily the same (they are not) though that would have given away the punchline.

    • @Vangard21
      @Vangard21 Рік тому +9

      Yeah I know it's "mathy" but we shouldn't skip the trig identities to show that all three are indeed the same.

    • @backwashjoe7864
      @backwashjoe7864 Рік тому +6

      Yeah, I was doing that in my head a bit during the video and was waiting for this reveal. Felt incomplete without it! But the graphing was nice too. :)

    • @silver6054
      @silver6054 Рік тому +1

      Right, and it might also lead to a confusion in definite integration, "there's no C so which method is right!" But since the functions really are the same up to a constant, any will work with a definite integral where the constant sort of cancels out.

    • @jamesknapp64
      @jamesknapp64 Рік тому +1

      Yeah when I show this to calc 1 students I stress that they are all equal up to a constant.

    • @nymalous3428
      @nymalous3428 Рік тому

      That's really helpful, thank you!

  • @jamesl8640
    @jamesl8640 Рік тому +89

    It wouldn't be a Ben sparks numberphile video without geogebra somewhere in it

  • @OneTrueBadShoe
    @OneTrueBadShoe Рік тому +143

    I love Ben Sparks' videos

    • @numberphile
      @numberphile  Рік тому +113

      Ben, is this your burner account?

    • @SparksMaths
      @SparksMaths Рік тому +51

      @@numberphile If it is, it's so well disguised that I don't recognise it :)

    • @OneTrueBadShoe
      @OneTrueBadShoe Рік тому +18

      I am not Ben Sparks, and so far have never claimed to be.

    • @kenhaley4
      @kenhaley4 Рік тому +30

      @@OneTrueBadShoe ...which is exactly what Ben Sparks would say if you were him, or he were you.

    • @LeoStaley
      @LeoStaley Рік тому +1

      @@OneTrueBadShoe bro, he's just joking.

  • @di5perat039
    @di5perat039 Рік тому +15

    you can get the same effect by integrating functions like 1/(4x) in two different ways: First by writing it as 1/4 * 1/x, which integrates to 1/4 * ln|x| + c, or secondly by a linear substitution, then giving 1/4 * ln|4x| + c. Of course, the trick is again in the constant, because ln|4x|=ln(4)+ln|x|

  • @tissuewizardiv5982
    @tissuewizardiv5982 Рік тому +7

    This actually happened in my first year calc class. This problem was on a test and different students got these various answers, and were very confused when they got their tests back with points taken off. Eventually our professor graphed them to see they were the same.

  • @geraldsnodd
    @geraldsnodd Рік тому +10

    This video came at the right time
    I just completed some exercises on indefinite integration.

  • @naikshibabrat
    @naikshibabrat Рік тому +2

    this is why I fell in love with integrations, finding new and tricky functions to integrate and differentiate to check the answer! Introduction to calculus made me appreciate Mathematics big time :)

  • @sylbeth808
    @sylbeth808 Рік тому +19

    I would've used t/u substitution, since it may be the faster. Realising they're the derivative of each other so you change sin(x) for t and cos(x)dx for dt then integrate and rewrite, and you end up with t²/2 + C = sin(x)²/2 + C

    • @FeltNokia
      @FeltNokia Рік тому +2

      My first thought was the same! I kept watching video thinking, oh surely the next method will be a u-substitution, and then it never came!

    • @genessab
      @genessab Рік тому +2

      Well his methods for 2/3 were in fact u substitution, just an informal way of doing it.

    • @sylbeth808
      @sylbeth808 Рік тому

      @@genessab yeah, I thought so, but I just thought it was a bit more convoluted than necessary, though it still is nice to have that thought process, "normal" t/u substitution are nice to think about too

    • @mr.prometheus3320
      @mr.prometheus3320 Рік тому +1

      Yeah! I thought of u-subs right away too. I puzzled with it for a bit and wondering if they're describable as a special case of parts where u = v.

    • @sylbeth808
      @sylbeth808 Рік тому +1

      @@mr.prometheus3320 they are for sure a special case, yeah. Actually, when you have integral(udu) it's always gonna be u²/2 + C. Since you can use integration by parts to see that
      indefinite integral(udu) = u² - indefinite integral(udu) indefinite integral(udu) = u²/2
      It's fun to see that now

  • @xyz.ijk.
    @xyz.ijk. Рік тому +32

    Numberphile going back to its roots! This is outstanding! You should have one of these a week, your audience would learn so much! Thank you for doing this one.

  • @Mutual_Information
    @Mutual_Information Рік тому +39

    I like a video that challenges my intuition. I know there’s multiple ways to integrate, but it hadn’t occurred to me that the functional expression might be different (though in effect equivalent). Very cool!

  • @rmsgrey
    @rmsgrey Рік тому +18

    What I want to know is why Ben didn't show that the answers were equivalent by more than one method?
    Between the double-angle formula for cos and the Pythagorean identity, you can show that the three different expressions only differ by their constants (which is easier than sketching the three graphs to do on paper).

  • @OcteractSG
    @OcteractSG Рік тому +4

    Interesting wrap-up at the end. Despite having never learned calculus, that part was insightful.

  • @sirappleby1
    @sirappleby1 Рік тому +3

    Thanks Ben, great video to share with my IB class.

  • @toferg.8264
    @toferg.8264 Рік тому +1

    Ben Sparks has got to be my favorite Numberphile regular.

  • @Gayuha
    @Gayuha Рік тому +1

    I remember one teacher showing it the other way around. He wrote a trigonometric function and differentiated it. Then he wrote a completely different function, differentiated it, and to our amazement, they turned out to have the same derivative. He then proved using some trigonometric identities that they differ by a constant.

  • @goodboi650
    @goodboi650 Рік тому

    Every one of these videos is another part of forgotten maths integrated into my head once again.

  • @sander_bouwhuis
    @sander_bouwhuis 5 місяців тому

    I really love this guy because he also uses visualization in a great way which can sometimes really clarify why something is the case.

  • @joshuastucky
    @joshuastucky Рік тому +31

    It wasn't until grad school that I actually understood what an indefinite integral actually is: the preimage of an operator (the derivative operator) in a function space. That is, an indefinite integral tells you all the things that you apply the derivative operator to in order get the integrand. We write the result as a function, but it's actually a set of functions indexed by (in this case) the real numbers.

    • @ayernee
      @ayernee Рік тому +1

      it never made sense to me that it's taught as a separate special thing in high school, where you wouldn't dare teaching about function spaces.

  • @blazerboy55
    @blazerboy55 Рік тому

    Holy cow, ever since i first saw the notation bit mentioned at 7:20 I've never heard anyone else ever comment on it but it was a strong memory for me. It's very validating to see it mentioned here.

  • @SpySappingMyKeyboard
    @SpySappingMyKeyboard Рік тому +1

    It doesn't matter how many times I see it, the fact that a trig function squared is jsut another trig function (plus some shifts and frequency change) never ceases to be unintutitive

  • @EthanBradley1231
    @EthanBradley1231 Рік тому +3

    I specifically avoided learning trig identities when I took calculus. When you posed the problem I jumped to u-substitution with u = sinx, and when you hinted that different methods may give seemingly different answers my next approach was integration by parts.

  • @nopetuber
    @nopetuber Рік тому +2

    My Calculus professor used to say "differentiare humanum est, integrare diabolicum"

  • @olivermaclean8564
    @olivermaclean8564 Рік тому +1

    Oh nice you can do this by parts, substitution, trig identity and recognition, I'm definitely going to have to use this question in future

  • @ibrahimmahrir
    @ibrahimmahrir Рік тому +13

    Method 1 and Method 3 are equivalent because *cos 2x = 1 - 2 sin² x* so *-1/4 cos 2x + c = 1/2 sin² x + (c - 1/4) = 1/2 sin² x + c'*
    Method 2 and Method 3 are equivalent because *sin² x + cos² x = 1* so *-1/2 cos² x + c = 1/2 sin² x + (c - 1/2) = 1/2 sin² x + c''*

    • @alpardal
      @alpardal Рік тому +4

      That's what I missed in the video: you can use the trig identities again to actually show how the functions are equivalent

    • @kabascoolr
      @kabascoolr Рік тому +1

      Yeah. I was also confused as to why did not use trig identities after his integrals to simplify, just like he did in one of his methods. The video title and mood, initially made the different answers seem paradoxical.

  • @neilgerace355
    @neilgerace355 Рік тому +4

    7:24 ".. which no-one argues with, but no-one writes." Hahaha

  • @d4slaimless
    @d4slaimless Рік тому

    Very nice video! Especially liked the graphs in the end. I'd pick the 2nd/3rd methods (they are essentially the same).

  • @edudey
    @edudey Рік тому +10

    You need to make your next video shedding light on the trig identities that explain how to convert between the 3 or 4 very different looking formulas, given specific C values.

    • @davidplanet3919
      @davidplanet3919 Рік тому +1

      Agreed. It would also be great to see the double angled formula proved by using the unit circle.

  • @norpedholland5696
    @norpedholland5696 Рік тому

    Yeah I learned this back in calculus when I got a different answer than the answer sheet, so I graphed them on Geogebra and noticed exactly what this video explains.

  • @stephenbeck7222
    @stephenbeck7222 Рік тому +2

    To answer one of the questions at the end, about which methods students would use: in the AP program, a Calc AB student would probably use method 2 or 3 (a basic example of ‘u sub’), and a Calc BC student would probably use method 4, integration by parts. Most American students in my experience would look at the trig identity used in method 1 and just nod their head sheepishly while thinking, “yea that thing exists but I’ll never think to use it in that way.”

    • @AdmiralJota
      @AdmiralJota Рік тому

      Agreed. It's been decades since I was in a Calc class, but I'm pretty sure I'd have done it then the same way I did it today: as a basic u substitution. u = sin(x); du = cos(x)*dx; I = Int(u*du). But then, I never could be bothered with memorizing trig identities.

  • @bsofchess7943
    @bsofchess7943 Рік тому +2

    Method 5
    Put sinx = t (now diffrentiate both side wrt x)
    Cosx =dt/dx
    Cosxdx=dt
    Now just put the value of sinx = t & cosxdx = dt
    To get integral of
    t dt
    Which is on integrating
    (t^2)/2 + c .......(1)
    Now put back the value of t (= sinx) into the eqn (1)
    So the answer is
    ((Sinx)^2)/2 + c
    Same ans as in method 4. But simpler than integration by part....

    • @kaye_07
      @kaye_07 Рік тому +1

      That's method 3.. :)

  • @EtoileLion
    @EtoileLion Рік тому +1

    Though on the notation thing, something Geogebra did that would probably have given more of a hint to students is that it called the constant "c1", rather than just c - which would reinforce the idea that all of the answers have some constant c applied to them, but it is not necessarily the *same* constant between different answers.

  • @rudranil-c
    @rudranil-c Рік тому +1

    Ben is the best math demonstrator on this channel. Period.

  • @captainyeahyuh9969
    @captainyeahyuh9969 Рік тому

    I just learned integration by parts, and I ended up using that. Wild video!

  • @christopherknight4908
    @christopherknight4908 Рік тому

    You can even get two more "different" results, if when using integration by parts, you substitute -1/4 cos(2x) or -1/2 cos^2(x) for the integral of sin(x)cos(x) at the end.

  • @velike
    @velike Рік тому +3

    There is actually another method, and it’s the easiest in my opinion
    You can simply consider the cos(x)dx as a differential of a trigonometric function which is sin(x) so, cos(x)dx=d(sin(x))
    Integral(sin(x)d(sin(x))) = (sin^2(x)/2) + C
    And you get the same result as in the last methods

    • @stanleydodds9
      @stanleydodds9 Рік тому +1

      That's method 3 in the video, just phrased slightly differently. "cos(x)dx = d(sin(x))" is the same as saying "cos(x) = d/dx(sin(x))". Usually you'd just refer to this as u substitution, using u = sin(x), du = cos(x)dx. It's all the same thing, just the chain rule in reverse.

    • @phiefer3
      @phiefer3 Рік тому +1

      That's literally what he did for method 3. He just went through all the steps for why it becomes half the square.

    • @velike
      @velike Рік тому

      @@stanleydodds9 Exactly

  • @MattStodola
    @MattStodola Рік тому

    I particularly like giving students the indefinite integral of tan(x)*[sec(x)]^2 for a similar reason: it can be found via u-substitution in two different ways that give two very different-looking answers, and you can reconcile those differences using trigonometric identities and the constant of integration

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 Рік тому +1

      3 ways.
      u=tan(x), du=sec²(x)dx
      You get the integral of u du
      u=sec(x), du=sec(x)tan(x)dx
      You get the integral of u du
      u=½sec²(x), du=tan(x)sec²(x)dx
      You get the integral of du

  • @Jkauppa
    @Jkauppa Рік тому +1

    use laplace transforms (laplacian of derivative) to more directly get the proper integral of any function, just have your laplace tables completed

  • @madacol
    @madacol Рік тому +1

    would be great a followup video explaining how to get from one solution to another using only trigonometric identities

  • @martincarpenter2200
    @martincarpenter2200 Рік тому

    Method 3 & 4 show constant as the same value c. But methods 1 and 2 have different solutions so the constant can't be c, choose other values e.g. a and b. That makes it easier to explain and understand

  • @kenhaley4
    @kenhaley4 Рік тому +2

    Ben Sparks is one of my favorate Numberphile presenters. Truly enjoyable!

  • @macronencer
    @macronencer Рік тому +1

    This is weirdly nostalgic for me... in 1982 I had an interview for a place at Nottingham University studying maths. In the interview they asked me to integrate something a little trickier: e^x.sin(x).cos(x) - I ended up doing it by parts, but then applying the "by parts" method again. It was a pretty tense experience! I did get an offer in the end but I chose to go to Southampton instead (I think I just wanted to live by the sea!). Every time I see Brady's videos at Nottingham I always wonder how many of the people on screen would have been my teachers, had I chosen differently... obviously not the younger ones, but still.

    • @therealax6
      @therealax6 Рік тому +1

      I wish we lived in a world where educators at lower levels weren't afraid of complex numbers. They make most of trigonometry _very_ straightforward, after all: sin x = (e^ix - e^-ix)/2i, cos x = (e^ix + e^-ix)/2, so multiply all those things together (including e^x) and you get (e^(1+2i)x - e^(1-2i)x)/4i right away. While it will require some later manipulation, this is very easy to integrate as it is.

    • @macronencer
      @macronencer Рік тому

      @@therealax6 I really like that approach. Thanks!

  • @edwardsong5199
    @edwardsong5199 Рік тому +3

    My immediate reaction to the different answers were that you can add any constant, and any constant is just c = c(sin^{2}(x) + cos^{2}(x) ). Moreover, the expanded version of cos2x is cos^{2}(x) - sin^{2}(x) so in the end we just have lots of sin^{2} and cos^{2}.

    • @zachb1706
      @zachb1706 Рік тому

      C is a constant. Which means it can't have an x term in it

    • @killerbee.13
      @killerbee.13 Рік тому +1

      @@zachb1706 It can because that x gets 'cancelled out' by a trig identity, which is that the term there equals 1. It's the same as saying c = c(x/x) (except without the minor division by zero issue that has).

  • @mashfiqurrahman6391
    @mashfiqurrahman6391 Рік тому +4

    This is a brilliant observation. I learnt it when I was doing integration problems but getting the different answers for same problem.

  • @Tom-sp3gy
    @Tom-sp3gy Рік тому

    Simply brilliant!

  • @nahblue
    @nahblue Рік тому +1

    and never forget the trig unity, sin² x + cos² x = 1 which can be used to show that methods 2 and 3 are the same, just off by a constant

  • @teeweezeven
    @teeweezeven Рік тому +24

    I think method 2 and 3 are both "the best" since it's basically a substitution, one of the more useful methods for solving integrals.
    That being said, I went for partial integration and I'm glad it appeared in the video!

  • @atrus3823
    @atrus3823 Рік тому

    I learned 2 and 3 as u-substitution. You can write sin x as u. Then you take du/dx = cos x => du = cos x dx, which gives integral of u du = 1/2u^2 = 1/2 sin^2 x.

  • @topilinkala1594
    @topilinkala1594 Рік тому

    The notation of putting a number after fuction name normaly means apply the function that many times, but it is customary to use it with trigonometric functions to raise that function to the power, because those are not usually applied one after other. But of course they are in navigation and in survey where you can see sin(sin(x)) and others.

  • @patrickvassallo2884
    @patrickvassallo2884 Рік тому +1

    I really liked how using different approaches leads to different looking answers that all correct. The easiest method, for me, was u-substitution (let u=Sin(x) then du=Cos(x)dx). Using Trigonometric identities, the results can be shown as equal to each other. Now, showing that would be a great trig review for the students, though they might not think so. 😁

    • @tgwnn
      @tgwnn Рік тому

      Yeah to me too. Although the half angle tangent substitution would have been fun too lol.

  • @joe12321
    @joe12321 Рік тому +3

    I think the average calc student would be more likely to use integration by parts because that stuff would be fresh in their mind. Trig identities not so much unless they're especially studious!

  • @Xcyiterr
    @Xcyiterr Рік тому

    as a (pretty bad) A level student here with exams coming in less than 1 week
    thank you for the accidental lesson in integration, very appreciated

  • @ruipaulovigario1115
    @ruipaulovigario1115 Рік тому

    Just another technique to add to the ones presented: since sinx cosx dx = sinx d(sinx), we can make a variable substitution y=sinx and integrate for y: Int(ydy) becomes 1/2y^2+C and finally, replacing back y, 1/2 (sinx)^2 + C. And of course, we can also go the other way around with -d(cosx)...

  • @steveyankou4144
    @steveyankou4144 Рік тому

    "Do you remember some calculus from your school days?"
    "No, I don't."
    Me, "OK cool, maybe I'll be able to follow this." (instantly totally lost)

  • @GeoffryGifari
    @GeoffryGifari Рік тому +1

    what this also means is that we can change 1/4 cos(2x) to -1/2 sin²(x) to 1/2 cos²(x) just by adding constants
    maybe there exists out there another family of functions who each look different, but you can get one from the other by adding (the same?) constant

    • @vsm1456
      @vsm1456 Рік тому

      do you mean like tan and cotan, and sec and cosec?

    • @GeoffryGifari
      @GeoffryGifari Рік тому

      @@vsm1456 maybe even outside the trig functions!

  • @harrybarrow6222
    @harrybarrow6222 Рік тому

    For me, it was a revelation when I learned about complex numbers, and the fact that:
    e^ix = cos x + i sin x
    Now it easier to generate the angular formulae and differentiate them.

  • @TBCN69
    @TBCN69 Рік тому

    “Do you remember calculus from school days?”
    Me who didnt even lear it:”Yes.”

  • @Christian_Martel
    @Christian_Martel Рік тому

    In beam theory, when integrating from rotation to displacement, then twice to shear and finally to bending, the need to carefully establish what the constant is at each integration.

  • @paullerner3623
    @paullerner3623 Рік тому

    I did A level maths 53 years ago no maths since and I immediately saw it as integral y dy/dx dx and got y^2/2 where y= sinx.

  • @rtpoe
    @rtpoe Рік тому +1

    I'd say that the thing to know (other than remembering your constants when integrating) is that CYCLIC functions (like sine and cosine) can get REALLY WEIRD.

  • @cihant5438
    @cihant5438 Рік тому +1

    This can be thought of as proving certain trig identities using calculus (up to a constant).

  • @invaderpopz
    @invaderpopz Рік тому

    that's interesting that he said he thought students should use the double-angle or the integration by parts methods, at the school where I work there is a huge emphasis on u-substitution and I would expect almost all our students to use that method

  • @Crabbi5
    @Crabbi5 Рік тому +11

    This was a cool video! Reminds me of how 1/(x+1) and x/(x+1) has the same derivative, for the same reason. And it freaked me out the first time I saw it

    • @SparksMaths
      @SparksMaths Рік тому +7

      An excellent example, but do you need to use -1/(x+1) and x/(x+1) (or vice versa), for them to have the same derivative?

    • @adb012
      @adb012 Рік тому +6

      1/(x+1) and x(x+1) don't have the same derivative. 1/(x+1) and -x/(x+1) do, and the reason (I know you know, but just to complete your idea for other readers) is that:
      1/(x+1) = (1+x-x)/(x+1) = [-x + (x+1)] / (1+x) = -x/(1+x) + (x+1)/(1+x) = -x/(x+1) + 1,
      which means that they are almost the same function except shifted one unit vertically one from the other, and hence they have the same slope for any value of x.

  • @PC_Simo
    @PC_Simo Рік тому +1

    *Ben:* ”Is sin(x) the same as cos(x)?”
    *Me:* ”Well, in isosceles right triangles, yes. 🧐”

  • @1985yf
    @1985yf Рік тому

    The last method by parts can also be done by substitution

  • @torlachrush
    @torlachrush Рік тому

    Really enjoyed this video. What was not explained is why C the constant of integration disappears if the integral has limits which might have been helpful. More fundamentally where C comes from.

    • @digitig
      @digitig Рік тому

      It's fairly simple algebra to see why the constant disappears in a definite integral. You're subtracting the values of the same integral evaluated at two different points: (f(a)+c)-(f(b)+c), so the two constants cancel. I find the easiest way to see why you need the constant in the first place is that when you differentiate, all constant terms vanish. So when you integrate you have to put them back - but you don't know what they were; the information is lost.

  • @Handelsbilanzdefizit
    @Handelsbilanzdefizit Рік тому +1

    That's why you should write the areafunction as definite integral: A(x) = ∫ _0^t f(t) dt
    Because then, the constant 'C' is vanishing away, and you get the correct answer.

    • @adiaphoros6842
      @adiaphoros6842 2 місяці тому +1

      If f(x) = eˣ, then the ∫₀ˣ eᵗ dt = eˣ-1. By comparison, c=-1, so the lower limit should be the inverse antiderivative evaluated at 0 (i.e. F⁻¹(0)) in general.

    • @Handelsbilanzdefizit
      @Handelsbilanzdefizit 2 місяці тому

      @@adiaphoros6842
      You're right. What I wrote is not always correct.
      Because there are functions you can't evaluate at x=0.
      F(x)= 1/x, F(x)=1/x², F(x)=1/(x+x²+..), F(x)=e^(1/x), etc...
      There are better ways to handle this constant.

  • @tontonses7824
    @tontonses7824 Рік тому +1

    For me the go-to solution was to notice that (sin x)' = cos x, the rest follows nearly instantly: ∫ sinx cosx dx = ∫ sinx d(sinx) = sin²x/2 + c

  • @SuperYoonHo
    @SuperYoonHo Рік тому +1

    Nice challenge!

  • @rileyjeffries1282
    @rileyjeffries1282 2 місяці тому +1

    I would’ve first thought u substitution similar to the second method shown. And this kinda thing happens all the time another example is the integral of tan(x)*sec^2(x) you can use tangent or secant for the substitution variable

  • @culwin
    @culwin Рік тому

    I'm gonna have to send this video to my calculus teacher from 20 years ago. I bet they marked some of my answers wrong that weren't!

  • @needywallaby2030
    @needywallaby2030 Рік тому

    We can slightly change 3rd method:
    try y=sinx
    dy/dx=cosx
    dy=cosxdx
    Sinx*cosx*dx=y*dy
    Integral (ydy) =y^2/2 + C = 0.5*(sinx)^2+C

  • @FuncleChuck
    @FuncleChuck Рік тому

    I don’t remember Calculus so much as I have healed from the pain of being forced to learn Calculus l, before the sun had even come up, as a teenager.
    Absolutely traumatizing.

  • @JaykTheJackal
    @JaykTheJackal Рік тому +1

    My instinct was "u substitution," u = sin(x), du = cos(x) dx. Thus u^2/2 + c, or sin(x)^2/2 + c. When I noticed the different answer, I was like, "ah, but that's the same answer shifted by a constant." And then I realized that was the point of the video.

  • @random19911004
    @random19911004 Рік тому

    Seen this many times before.
    All are equivalent, with a different value for the constant, that is determined by trig identities (like sin^2 + cos^2 = 1 or cos2x = cos^2(x) - sin^2(x) )

  • @abbe1255
    @abbe1255 7 місяців тому

    This reminds me of a (digital) math quiz we had at school. One question was about integrating something like -1/sqrt(1-x^2), I answered: -arcsin(x) +c but the "correct" answer was arccos(x)+c so I lost a point for it.
    -arcsin(x) and arccos(x) are the exact same functions just ofset in the y-axis

  • @Leeengold
    @Leeengold Рік тому

    Well, integration by parts is quite symmetrical in this example and thus can also result in 1/2cos(x)^2

  • @colinwood9717
    @colinwood9717 Рік тому

    5:45 pretty much sums up my uni maths courses

  • @krishna8976
    @krishna8976 Рік тому

    Great video. Can you do more videos on Fourier transform.

  • @mighty8357
    @mighty8357 Рік тому

    You can think of the four answers all having the same slopes at every point. Thus they have the same derivative which is the first function being integrated.

  • @sidharthcs2110
    @sidharthcs2110 Рік тому

    The most frustrating thing about this kind of problems (for me ) , was (still is ) remembering the identities of those functions. I suffered a lot because I couldn't remember the identities.

  • @XenophonSoulis
    @XenophonSoulis Рік тому

    Both method 2 and method 3 are going to save you at some point (3 works like a charm if you have both exponential and trigonometric functions at once). My favorite way of writing it would be
    ∫sinxcosxdx=
    =(1/2)∫2sinx(sin)'(x)dx
    =(1/2)∫((sinx)^2)'dx
    =(1/2)(sinx)^2+c
    though, because it happens in an uninterrupted line.

  • @georgemoore2952
    @georgemoore2952 Рік тому +3

    What I might have added on as an explanation is a more general interpretation of the relationship between derivatives and integrals. By performing an indefinite integral, you're essentially starting with the rate of change and asking what function has that (the original) function as its rate of change. Since a rate of change doesn't care about where you start, there has to be a degree of uncertainty (i.e. the constant at the end).

  • @fredfondler7281
    @fredfondler7281 Рік тому

    I guess a step-wise function of involving any of the answers for any values of x would work too

  • @harmanpreetsingh7848
    @harmanpreetsingh7848 Рік тому

    Now I understand the importance of mighty 'c' my teacher used to yell at me.

  • @dskinner6263
    @dskinner6263 Рік тому +4

    Wow - so far over my head! This is the first time I've ever had to play a video at 3/4 speed, and I still don't have a clue. Guess I need a remedial math class 🙃 but even without understanding this video I enjoyed it, and I always love the Numberphile and Sixty Symbols channels.

    • @neonglowmusic
      @neonglowmusic Рік тому +1

      Integration simply gives you an area under a curve. This is akin to saying you can find the area of a square by doing a*a, or a^2, or if you are more inclined, by splitting the square into two triangles, etc.
      There are multiple ways of finding the same answer, all valid. In these examples, all the functions express the area under the curve, which is why all the results look the same with an offset.

    • @dskinner6263
      @dskinner6263 Рік тому

      @@neonglowmusic Thank you! I'll watch the video a few more times and see if I can get it.

    • @denny141196
      @denny141196 Рік тому +2

      Don't worry too much about it. Some of this is university level math, specifically the integration by parts.
      If you're curious on how that works, it's a rearrangement of the division formula of differentiation:
      f(x) = uv -> f'(x) = vu' + v'u.
      Integrate both sides: f(x) = ∫vu' + ∫v'u
      f(x) = uv -> uv = ∫vu' + ∫v'u
      Therefore, ∫vu' = uv - ∫v'u
      QED.

    • @dskinner6263
      @dskinner6263 Рік тому

      @@denny141196 Thank you! I I appreciate your taking the time to break it down further.

    • @hybmnzz2658
      @hybmnzz2658 Рік тому +1

      I don't think integrals are something you can sit down and watch slowly and suddenly understand. I mean no disrespect, like once someone defines an integral and sits you down in a calculus course, it becomes clear. Otherwise it's just a funky symbol.

  • @deadeaded
    @deadeaded Рік тому

    I thought this was going to be about the question "where does the +c come from" when you do the double integration by parts method, which is often glossed over in calculus courses.

    • @kevinjohnson4531
      @kevinjohnson4531 Рік тому

      Thanks for asking this. The "+C" comes after you integrate. It feels like there was just some hand waving at the end to add it, but since we solved this "algebraically" it feels like this part was just tacked on.

  • @tgwnn
    @tgwnn Рік тому

    I insta-changed variables, sin(x)=s, ds=cos(x), answer is s²/2 ie answer 3 and 4. I found his explanation of "methods" 2 and 3 a bit confusing/shortcut-ish, it's nice to change variables explicitly and show what's happening.

  • @sanauj15
    @sanauj15 Рік тому

    I’ve always used U sub for these types of integrals. u= sinx du = cosxdx dx = du/cosx so the integral comes out to be u du.

  • @kikivoorburg
    @kikivoorburg Рік тому +1

    I'm not sure whether this is already well known, but the double angle identities are trivially easy to rederive if you know Euler's Formula:
    exp(iθ) = cos(θ) + i sin(θ)
    exp(2iθ) = cos(2θ) + i sin(2θ)
    exp(2iθ) = exp(iθ) · exp(iθ)
    = (cos(θ) + i sin(θ))^2
    = cos(θ)^2 + 2i sin(θ) cos(θ) - sin(θ)^2
    Now equate the two sides:
    cos(2θ) + i sin(2θ) = cos(θ)^2 + 2i sin(θ) cos(θ) - sin(θ)^2
    Hence:
    cos(2θ) = cos(θ)^2 - sin(θ)^2
    sin(2θ) = 2 sin(θ) cos(θ)
    I'm sure it varies from person to person, but I find it much easier to remember Euler's Formula than the angle identities so this is how I remember them!
    You can easily extrapolate for the angle sum identities as well.

  • @ojjusvianimate6793
    @ojjusvianimate6793 Рік тому

    I originally used the 1st method but when they talked about more ways to do it, i immediately used the 4th one, I'm 17yrs old

  • @moeberry8226
    @moeberry8226 Рік тому

    Since this is an indefinite integral we are calculating the anti derivative so the derivative of all 3 of those functions will all be the same since vertical shifts do not change the slope at any point.

  • @benoitb.3679
    @benoitb.3679 Рік тому

    BEN SPARKS!

  • @hareecionelson5875
    @hareecionelson5875 Рік тому +1

    You know you're a fresh green physics student when you start with integration by parts.
    I bet the engineers are laughing with glee as they jump straight into their trig identities

  • @troelshansen6212
    @troelshansen6212 Рік тому

    I was about to say, if I remember my trig identities correctly, I'm pretty sure a bit of trig algebra would readily reveal that those functions are indeed the same, apart from an additive constant

  • @alveolate
    @alveolate Рік тому +1

    omg this would've been such a convincing reminder to never forget the "+c" for integration...
    back when i studied this 20 years ago -___-