Continuous and Uniformly Continuous Functions

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 136

  • @pseudorealityisreal
    @pseudorealityisreal 3 роки тому +45

    Whaaaat!!!!??? 5 minutes is all it took for you to clarify a concept I was trying to figure out for months 😂...Excellent!

  • @dongookson3755
    @dongookson3755 4 роки тому +5

    Man the last 20 seconds...cannot thank you enough. God’s work.

  • @dk5943
    @dk5943 Рік тому +2

    Its CRAZY how someone on yt can explain a concept much more efficiently. I am a math major in the first semester and I am rlly struggeling to understand concepts when professors explain it, or its just hatd for me to understand stuff in the lecture, even worse when friends try to explain it to me… as they are trying to confidently teach me, (the themselves haven’t understood it good enough) I then feel very stupid.
    But I know it mostly depends on their explanation… so thank you!!!

  • @JTehAnonymous
    @JTehAnonymous 10 років тому +51

    That explanation was so clear. thank you very much.

  • @pankajaggrawal7762
    @pankajaggrawal7762 3 роки тому +3

    Great animation and explanation. It is first time, when I could understand uniform continuity geometrically.

  • @viveakkatochG
    @viveakkatochG 3 роки тому +2

    Hands down the best explanation on this topic . 💯🕺

  • @danielyang6826
    @danielyang6826 7 років тому +1

    The graphical explanation cleared up all confusion I had about the definitions. Thank you.

  • @Stuk4s
    @Stuk4s 5 років тому +2

    I struggled for 1 week trying to understand continuity. Now finally thanks to you i understood!

  • @annikabrundyn8441
    @annikabrundyn8441 9 років тому +57

    Amazing! Thank you! There aren't enough good videos on Real Analysis :)

    • @josuke6869
      @josuke6869 6 років тому

      Do you know any good ones

    • @IStMl
      @IStMl 4 роки тому +1

      @@josuke6869 I know some if u still need: ua-cam.com/video/dQw4w9WgXcQ/v-deo.html

    • @Mryeo5354
      @Mryeo5354 4 роки тому +3

      @@IStMl my disappointment is immeasurable and my day is ruined

    • @brilliazz
      @brilliazz 4 роки тому

      @@Mryeo5354 come on it was a joke or just to inspire you

    • @lluccanela3042
      @lluccanela3042 4 роки тому +1

      @@IStMl Don't know if you're still alive but thank you. I needed those :)

  • @Whitecroc
    @Whitecroc 10 років тому +8

    Thank you. This has bothered me for years. The definition is so abstract and features so many moving parts I was never quite sure if I got it.

  • @kiwanoish
    @kiwanoish 5 років тому +1

    Very nice video, and a very clear and concise explanation! Note though: Starting at 2:50 it says at the top right: "If a given \delta works for any \epsilon we choose, for any points in the domain". This might be a slightly confusing formulation, since it's more like: For a given \epsilon, we can find a \delta that works for any points in the domain. We cannot find a \delta that works for any \epsilon. But, again, you explained it perfectly, and hopefully people who watch the video will get the right idea anyways. Thank you!

  • @icee562
    @icee562 4 роки тому +1

    You saved me a weeks worth of frustration my friend. Bless you!

  • @znhait
    @znhait 10 років тому

    This is the best explanation I have seen explaining the difference between continuity and uniform continuity. Unfortunately, the main thing with these problems is how difficult they are to actually prove.

  • @magno5157
    @magno5157 3 роки тому +9

    For the uniformly continuous counter-example, it would be nicer if you kept both the epsilon and delta fixed and moved the blue region closer to the y-axis and picked two points on the curve that are in the blue region but are clearly not entirely in the red region.

  • @noahz.2054
    @noahz.2054 8 років тому +1

    Great examples and visuals. Very concise and no rambling

  • @farukahmed3179
    @farukahmed3179 4 роки тому

    This video has makes my understanding better of continuity. Very good video that's makes everyone impressed.

  • @Ke_eK
    @Ke_eK Рік тому

    Before finishing wathcing this video I didn't believe that this short 5 min video could actually help me but I was soooo wrong. Thank you so much.

  • @pykeselslayer
    @pykeselslayer 4 роки тому

    After about 3 hours of nothing, I finally understand, thanks

  • @umanicole9857
    @umanicole9857 9 років тому +15

    Direct me to your altar. You saved my little U-grad life. Amen. 😎

  • @AlpstoonE
    @AlpstoonE 11 років тому +2

    Great explenation! Really helpful for my upcoming calculus exam!

  • @michaelkisumu2420
    @michaelkisumu2420 7 років тому +1

    Awesome Video! Very clear explanation of the use of Delta-Epsilon in the context of uniform continuity, and the counter example added even more clarity

  • @Artus506
    @Artus506 12 років тому +1

    Thanks...it made it a lot clearer for me.

  • @jimothy221
    @jimothy221 4 роки тому +1

    Great explanation! It's a shame you don't upload any more videos!!!

  •  9 років тому +9

    Thank you. You helped me. Nice explanation and nice visuals. :)

  • @vinay9755
    @vinay9755 2 роки тому

    🙏🙏🙏🙏😊😊😊 thanks sir for making me visualise through graphical meaning about continuity and uniform continuity.🙋🙋👌👌

  • @drvanon
    @drvanon 5 років тому +2

    That was an amazing explanation. Thank you so much!

  • @Runako1653
    @Runako1653 11 років тому +3

    Thanks for explaining dont know why lecturers make it so hard to understand

  • @divyabansal2056
    @divyabansal2056 4 роки тому

    Thats the best explanation 👌🙌

  • @alekseyklintsevich4601
    @alekseyklintsevich4601 9 років тому

    Best explanation that I have seen

  • @rosishkatuwal5677
    @rosishkatuwal5677 5 років тому +1

    Thanks for the video...😍😍😍

  • @napathkraivisitkul5226
    @napathkraivisitkul5226 4 роки тому

    Thank you the visual explanation was so clear

  • @ridge9451
    @ridge9451 6 років тому +1

    This video was very well-done and very helpful. Thank you for your hard work on this.

  • @jamesrobertson9149
    @jamesrobertson9149 4 роки тому

    very good visuals and animations

  • @Ha-ppi-ness
    @Ha-ppi-ness 6 років тому

    Awesome intuitive explanation. And brief. Thanks!!!

  • @pkaypkay205
    @pkaypkay205 2 роки тому +1

    Outstanding

  • @mahimaverma5891
    @mahimaverma5891 8 років тому

    Thank you so much. you explained it very Nicely in a crisp and concise manner.

  • @nadoo4137
    @nadoo4137 6 років тому

    Very clear when showing it with graphs!

  • @for-the-love-of-maths
    @for-the-love-of-maths 6 років тому

    This is how to teach real analysis.....
    Anyone can solve question but the real task is to understand the hidden geometry..... 😀😀😀👐👐👐👐🙏🙏

    • @ericgilkey3549
      @ericgilkey3549 5 років тому

      I think there are more people who understand the concept, but can't write a proper epsilon-delta proof than vice versa. But I do think videos like these are helpful.

  • @AbhishekSingh_023
    @AbhishekSingh_023 2 роки тому

    Great explanation!!!

  • @harry1314521
    @harry1314521 12 років тому

    This is AWESOME! It helps me to understand totally!

  • @shivangi3030
    @shivangi3030 5 років тому

    Thanks sir you explained in really well

  • @estebanlopez1701
    @estebanlopez1701 5 років тому

    This is excellent, thank you, sir

  • @蔡小宣-l8e
    @蔡小宣-l8e 2 роки тому

    Thanks a million! 十分感谢!

  • @vr2495
    @vr2495 4 роки тому

    Very good video, thank you so much

  • @dcblunt666
    @dcblunt666 10 років тому

    Thank you for the video. A nice little refresher!

  • @angelsofthemafia
    @angelsofthemafia 10 років тому +1

    Great explanation, thank you. But I have a doubt: In function 1/x if we take interval [0.5,1] then we could apply Heine's Theorem because the function is continous in [0.5,1]. But then the function would be uniformly continous within [0.5,1]. However how is it possible if it is not uniformly continous?

    • @reinholdwillcox1273
      @reinholdwillcox1273 10 років тому +2

      The function is uniformly continuous on [.5,1]. If you extend your interval to (0,1], or (0, anything], that's when you lose uniform continuity.

    • @komalgiriup
      @komalgiriup 7 років тому +1

      Emsie emstraba this function is uniformly continues only in a certain interval but if talk about whole real lime then function is not uniformly continues

  • @jugglingisgreat
    @jugglingisgreat 8 років тому +1

    Excellent work. Thanks.

  • @aronhegedus
    @aronhegedus 8 років тому +2

    very nice visualisation

  • @adrian2266adrian2266
    @adrian2266adrian2266 8 років тому +1

    Thanks. This video indeed helped me.

  • @ThePlbenj
    @ThePlbenj 11 років тому

    In the last statement, that the function f(x)=1/x, what gurantees us that indeed, there is no delta we can find in the second points that you've mentioned?

  • @shubhankarnikhil5732
    @shubhankarnikhil5732 5 років тому

    Thanks for such clear explanation :)

  • @ToasterMagic
    @ToasterMagic 12 років тому +3

    THANKS MAN
    I AM FORM TAIWAN

  • @xrhsthsuserxrhsths
    @xrhsthsuserxrhsths 12 років тому

    i cant thank you enough for this vid....i can only say i am pleased

  • @Anthro12011fall
    @Anthro12011fall 11 років тому

    This clarifies everything!

  • @rickjohnson247
    @rickjohnson247 5 років тому

    Ur my fucking hero. Thx for saving me many hours for analysis class.

  • @Whitecroc
    @Whitecroc 10 років тому

    Just to double-check -- uniform continuity is informally verified by checking that for a given pair of points (x,y) it is true that |x - y| < delta => |f(x) - f(y)| < epsilon, correct? I spent years thinking it was the other way around (), and couldn't figure out why my verifications never added up.

  • @kidbuu8025
    @kidbuu8025 8 років тому

    This one is really good, would be better if there are some example, theorems and application, could be a great lecture.

  • @robin22061993
    @robin22061993 12 років тому

    Thank you! Very clear explanation

  • @alexter-sarkisov8321
    @alexter-sarkisov8321 10 років тому

    Great explanation, thanks!

  • @leoMoctezuma9876543
    @leoMoctezuma9876543 9 років тому

    thank you very much!! very good explanation

  • @supercrazpianomanaic
    @supercrazpianomanaic 7 років тому

    Great explanation!

  • @chiefs312001
    @chiefs312001 10 років тому

    oh man this is helpful. thanks dude.

  • @k.munusamy-6838
    @k.munusamy-6838 5 років тому

    good explanation.thank u so much

  • @Medvich
    @Medvich 8 років тому

    But if you choose the delta appearing at 4.27 the definition still holds true: you'll have values within epsilon for all other (x,y) throughout 1/x on the right that point if you look at the graph, for example where you defined your former delta

  • @anamaykane9355
    @anamaykane9355 7 років тому

    So, can we say that if the slope of a function is bounded below a certain value, then the function is uniformly continuous?

  • @mohammadtouseef1097
    @mohammadtouseef1097 3 роки тому

    There is something missing here, because f(x) =1/x is uniformly continuous for all x>1.Then how you're gonna fix the epsilon such that the corresponding delta will work for the whole domain.Because we know by video animation that it won't work

  • @ArtisticContingent
    @ArtisticContingent 8 років тому +1

    Really helpful, thank you :)

  • @pi_academy_manipur
    @pi_academy_manipur 4 роки тому

    The best of all

  • @zanezak878
    @zanezak878 8 років тому +1

    Great Video!

  • @anshumayadav9274
    @anshumayadav9274 6 років тому

    The concept is Seriously now understood by me. Thanks for uploading this video. It would be more better if you sound a bit slow. :') Thanks Ya!

  • @jejo63660
    @jejo63660 10 років тому

    So im guessing that its true then that no exponential function will be uniformly continuous? Or any line that has a curvature?

  • @ASW1430
    @ASW1430 10 років тому

    Thx alot, makes it very clear

  • @supermarcio_
    @supermarcio_ 11 років тому

    Woah. Thankful for days!

  • @gnapari1130
    @gnapari1130 4 роки тому

    Thank you ❤❤❤

  • @nainamat6861
    @nainamat6861 3 роки тому

    THAANK YOU SO MUCH SIR !!!

  • @BlumChoi
    @BlumChoi 5 років тому

    You sir, are amazing

  • @thekopian
    @thekopian 11 років тому

    yeah that was awesome ... amazing explanation

  • @kanikarajain4842
    @kanikarajain4842 7 років тому +3

    little bit confusion is there ....didnt understand dat which one we hav to choose first epsilon ...delta ??

  • @maria-mu5ht
    @maria-mu5ht 3 роки тому

    thank you............. so much...........

  • @mehdielnino4096
    @mehdielnino4096 7 років тому

    Very clear thanks

  • @lenysd1263
    @lenysd1263 Місяць тому

    Great❤

  • @rmutatina
    @rmutatina 12 років тому

    how come this is in AUTO & VEHICLES category?

  • @edmel144
    @edmel144 4 роки тому +1

    So i) continuous means one of the points is fixed, and this works when you consider each point in the domain in turn as a fixed point (the maximum delta can be different for each point), ii) uniformally continuous means there is a single maximum value of fixed delta for which point i) is true. So ii) is a stronger condition.

    • @DarinBrownSJDCMath
      @DarinBrownSJDCMath 4 роки тому +1

      That's correct. Uniform continuity is stronger. (1) Continuity means "for all epsilon, for all x, there exists delta(epsilon, x) such that for all x_0, d(x_0, x) < delta ==> d(f(x_0), f(x)) < epsilon" (2) Uniform continuity means "for all epsilon, there exists delta(epsilon), such that for all x and for all x_0, d(x_0, x) < delta ==> d(f(x_0), f(x)) < epsilon". Notice the difference between the two is that the quantifiers "for all x" and "there exists delta" have been switched. This means that in the definition of continuity, delta is a function of both epsilon and x, whereas in the definition of uniform continuity, delta is only a function of epsilon alone. So, every uniformly continuous function is continuous, because to find delta(epsilon, x), you can just take the delta(epsilon) guaranteed by the definition of uniform continuity.

  • @ASDDlojio
    @ASDDlojio 6 років тому

    LIFE SAVER

  • @babyloniaw8247
    @babyloniaw8247 8 років тому +1

    Thank you.

  • @carlosraventosprieto2065
    @carlosraventosprieto2065 Рік тому

    Thanks man

  • @daogiang2582
    @daogiang2582 4 роки тому

    Thanks!

  • @minexe
    @minexe 2 роки тому

    very clear

  • @-NikoLee
    @-NikoLee 8 років тому

    very helpfull thanks :-)

  • @Hayleeyyo
    @Hayleeyyo 10 років тому

    well explained

  • @medbob2498
    @medbob2498 5 років тому

    in the last exampl the delta will have to tend to 0 when we get closer and closer to the X axis and there is where we have the contradiction

  • @syifaiamacure3481
    @syifaiamacure3481 10 років тому

    Thank you so much :)

  • @InstantlyFail
    @InstantlyFail 10 років тому

    Thanks, I understand

  • @ckclasses9835
    @ckclasses9835 8 років тому

    great sir ur

  • @abcdef2069
    @abcdef2069 7 років тому +1

    how about f(x) = x^2, I never understood this kind of math logic. there is no delta for all the points in x^2. each delta makes each epsilon ^2, delta must become smaller the further right you go. i think mathematicians created this epsilon and delta things to mock us.
    this video has a good visual representstion than others, i probably made one step closer to get to know the delta and epsilon thing.

  • @stefanolai6236
    @stefanolai6236 4 роки тому

    very nice

  • @katherineholyfield6485
    @katherineholyfield6485 10 років тому

    Thank you

  • @DiegoMathemagician
    @DiegoMathemagician 4 роки тому

    I don't get one thing, the definition says: "For every epsilon there exists a delta...", not "there exists a delta such that for every epsilon..."

    • @pmcate2
      @pmcate2 4 роки тому

      Diego Mathemagician first you choose an arbitrary epsilon.

  • @garcezvanessa
    @garcezvanessa 9 років тому

    thank you!

  • @farhanfarooqui
    @farhanfarooqui 7 років тому

    No more videos?