Chapter 08.04: Lesson: Runge Kutta 4th Order Method: Formulas

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 30

  • @asfaquekhan6614
    @asfaquekhan6614 7 років тому +2

    at the k2 part...why there is (y+k1*h/2)....most of the books don't have that h part

    • @numericalmethodsguy
      @numericalmethodsguy  7 років тому +2

      Asfaque Khan The formula may look like y(i+1)=y(i)+(k1+.........)*h
      Some people write it is y(i+1)=y(i)+(k1p+.........)
      Both are right as the h is bundled with k1 as k1p=k1*h.

    • @asfaquekhan6614
      @asfaquekhan6614 7 років тому +1

      oh..right!! got it...thanks sir for such early reply☺

    • @louiebarrett5280
      @louiebarrett5280 3 роки тому

      pro trick: you can watch series at Flixzone. Been using them for watching loads of movies these days.

    • @danezechariah8257
      @danezechariah8257 3 роки тому

      @Louie Barrett Definitely, have been using flixzone} for since november myself :)

  • @shristithakur5107
    @shristithakur5107 3 роки тому +3

    Even after 11year this content is one of the best I found on UA-cam.
    Probably The Best.

  • @juanmontalvo5791
    @juanmontalvo5791 10 років тому +6

    This guy teaches way better than my worthless numerical methods professor at UTPA. I don't understand how my professor even got hired or how he gets such good scores on his course evaluations.

  • @vladishta
    @vladishta 7 років тому +2

    just a heads up, for the third derivative in the Taylor series expansion, you have dx^2 in the denominator

  • @numericalmethodsguy
    @numericalmethodsguy  12 років тому +1

    @yousafkazmi The formula may look like y(i+1)=y(i)+(k1+.........)*h
    Some people write it is y(i+1)=y(i)+(k1p+.........)
    Both are right as the h is bundled with k1 as k1p=k1*h.

  • @SEPHi27.
    @SEPHi27. 12 років тому +1

    Thank you for the explanations.

  • @ashidilkhan
    @ashidilkhan 11 років тому +1

    elegant explanation

  • @numericalmethodsguy
    @numericalmethodsguy  11 років тому +1

    Yes, you can.

  • @iteeshaashwath1657
    @iteeshaashwath1657 4 роки тому +1

    In deriving Runge-Kutta method of 4th order, how many unknown coefficients are involved originally and how many equations you get to find the values of these unknown coefficients? Hence how many coefficients can be chosen arbitrarily?

  • @pydamma
    @pydamma 11 років тому +1

    for solving higher oder derivatives can we apply heuns method
    that i learnt from this video link
    nmmathforcollege

  • @skeeeeeeeert
    @skeeeeeeeert 12 років тому +1

    i love you sir!

  • @seanpo03
    @seanpo03 12 років тому +1

    Hello, how do you alter this formula to calculate a second order differential equation?

  • @sumitshrestha3261
    @sumitshrestha3261 6 років тому +1

    Can you please explain why is it called the 4th order as the order of the derivative in the equation is one?

    • @numericalmethodsguy
      @numericalmethodsguy  6 років тому +1

      4th order as it uses up to 4th derivative terms in Taylor series.

  • @IceyJunior
    @IceyJunior 9 років тому +3

    can you show the proof ?

  • @askfskpsk
    @askfskpsk 13 років тому

    I think the subscript of derivatives should be x(i) when y(i+1) is expanded with Taylor series.

  • @fjskfjdkdksofk
    @fjskfjdkdksofk 9 років тому +2

    fucking fucking fuxking fuxking fucjing helpful!!
    regression interpolation derivative just everything

  • @zulfiqarali-zq1rg
    @zulfiqarali-zq1rg 5 років тому

    how we find values of coffiecnts a1,a2,,...?

  • @shazianaz5584
    @shazianaz5584 6 років тому

    Need solution of 2nd order differentia equation by 4th order RK and e examples too

  • @numericalmethodsguy
    @numericalmethodsguy  12 років тому

    Go to nm(dot)mathforcollege(dot)com and click on Keyword. Click on Higher Order Differential Equations. See the last three video lectures in sequence.

  • @kingstup
    @kingstup 13 років тому +1

    derivate where you are and where you want to go

  • @Hygiene11
    @Hygiene11 14 років тому

    Vielen Dank

  • @fanicia42
    @fanicia42 12 років тому +1

    im having the same problem. if you figure it out then let me know :P

  • @SoloModz99
    @SoloModz99 5 років тому +2

    i learned this in 1st grade