what a deranged number!!

Поділитися
Вставка
  • Опубліковано 27 січ 2025

КОМЕНТАРІ • 12

  • @marcelob.5300
    @marcelob.5300 14 днів тому +8

    Deja vu or my other self in a parallel universe have already watched this video? I wish I can ask him but we still can't communicate.

    • @cheeseparis1
      @cheeseparis1 14 днів тому

      one month ago, with a different example

  • @ianmi4i727
    @ianmi4i727 12 днів тому

    As usual, another super wonderful math video!!! Also I Love your shirt!!! 🥰

    • @drpeyam
      @drpeyam  12 днів тому

      Thank you!!?!

  • @maestrobrutalizador9605
    @maestrobrutalizador9605 14 днів тому

    This is unnecessarily complicate: its far easier to reason as follows. If d_k is the number of derangements in k persons then n!= sum(C^n_k d_k, k=0 to n) as every permutation have exactly 0, 1,...,or n fixed points where C^n_k is the binomial number n over k. Now, its easy to show using formal series that for any sequence {a_k}_k it follows that b_n=sum( C^n_k a_k, k=0 to n) if and only if a_n=sum(C^n_k b_k (-1)^k, k=0 to n), so it follows in our case that d_n=sum(C^n_k k! (-1)^k,k=0 to n), and using the series of the exponential function this last result can be simplified to d_n=floor(1/2+n!/e). Tadaaaaa....! 😁

  • @ambidexter2017
    @ambidexter2017 13 днів тому

    1854 is possibly the birth year of Sherlock Holmes.

  • @alex_ramjiawan
    @alex_ramjiawan 14 днів тому +2

    What about the integral formula or using the nearest integer of n!/e?

  • @notfancy2000
    @notfancy2000 14 днів тому +1

    !N ~ N!/e would have been a nice observation for closing 😊

    • @polygonc4538
      @polygonc4538 12 днів тому

      I always forget if it is floor or round of that expression ;)

  • @Blingsss
    @Blingsss 13 днів тому

    Deranged? More like mathematically misunderstood! Numbers like this are a reminder that math has a sense of humor.This video makes me want to brush up on my skills. SolutionInn has been my go to for tackling these unexpected surprises.

  • @doctorb9264
    @doctorb9264 14 днів тому

    See the envelope stuffing problem 🙂