Real Analysis | Motivating uniform convergence

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 18

  • @dbmalesani
    @dbmalesani 4 роки тому +4

    As usual, nice and enlightening video. This may be nitpicking, but in the second example, g_n(x) = ⁿ√x is not differentiable on [0,1] for any n, as it is not differentiable at x = 0.

  • @goodplacetostop2973
    @goodplacetostop2973 4 роки тому +7

    15:29

  • @caldersheagren
    @caldersheagren 4 роки тому +5

    I like to think of uniform convergence as the convergence of a sequence of functions under the supremum norm

  • @sinqobilebandile6558
    @sinqobilebandile6558 4 роки тому

    These are great. Next video needed expeditiously

  • @johnstroughair2816
    @johnstroughair2816 4 роки тому

    Looking forward to the next videos in the series. Can you do one on the implicit function theorem?

  • @laurafunk5198
    @laurafunk5198 3 роки тому +2

    how can you show that f_n(x)=x/n is not uniformly convergent?

  • @arvindsrinivasan424
    @arvindsrinivasan424 4 роки тому

    Gotta love analysis

  • @valentinamaraenglish8440
    @valentinamaraenglish8440 4 роки тому

    Very nice video.

  • @thenewdimension9832
    @thenewdimension9832 2 роки тому

    For understanding your lacture one should be smart enough!
    Thank-you so much, don't think any video in this topic can be made batter than that.

  • @duckymomo7935
    @duckymomo7935 4 роки тому +6

    Uniform limit theorem:
    More precisely, let X be a topological space, let Y be a metric space, and let ƒn : X → Y be a sequence of functions converging uniformly to a function ƒ : X → Y. According to the uniform limit theorem, if each of the functions ƒn is continuous, then the limit ƒ must be continuous as well.

    • @technoguyx
      @technoguyx 4 роки тому +3

      that's possibly the best motivation for the concept; uniform convergence is the condition you want for continuity to be preserved under limits, as well as for differentiating and integrating power series "term by term"

  • @FocusHarmonies_1
    @FocusHarmonies_1 3 роки тому

    If the domain is finite for fn=x/n will it have uniform convergence.

  • @lolatomroflsinnlos
    @lolatomroflsinnlos 3 роки тому

    13:18 forgot a cut?

  • @shohbekmahmudov5346
    @shohbekmahmudov5346 4 роки тому

    Hallo !
    Help me ! Where can I find suitable books to train for IMC ?

  • @djvalentedochp
    @djvalentedochp 4 роки тому

    superb!!

  • @duckymomo7935
    @duckymomo7935 4 роки тому

    uniform convergence is a special case of dominated convergence

  • @cristianv2850
    @cristianv2850 4 роки тому +1

    I am so confused just looking at this.

  • @arturocustodiodiaz
    @arturocustodiodiaz 4 роки тому +1

    FIRST !!!!!