Physics Informed Neural Networks (PINNs) for Solving System of ODEs - A Beginner's Tutorial

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ • 23

  • @elastropy
    @elastropy  2 місяці тому

    Join our Telegram group for exclusive access to detailed discussions, resources, programming files used in the video, and extra support! It's all free-click the link below to join now. See you there!
    Telegram Group Link - telegram.me/elastropy_official

  • @NDDAvid123
    @NDDAvid123 Місяць тому +1

    Excellent video for learning PINNs

    • @elastropy
      @elastropy  Місяць тому

      Hi @NDDAvid123, Thank you! I’m glad you found the video helpful for learning PINNs. Feel free to spread the word, and stay tuned for more content on this topic!

  • @MOTIVAO
    @MOTIVAO 2 місяці тому +1

    Great videos on PINNS, keep up the great work

    • @elastropy
      @elastropy  2 місяці тому

      Hi @MOTIVAO, Thank you so much! I’m really glad you’re enjoying the videos on PINNs. Your support means a lot, and I’ll definitely keep working on more content. Stay tuned for future tutorials!

  • @amanaliali7050
    @amanaliali7050 Місяць тому

    Please make videos on fuzzy logic and neural network. Your content is really helpful.

  • @azeemishaq8240
    @azeemishaq8240 3 місяці тому +2

    Please solve coupled nonlinear system of odes using pinns

  • @lysaait1711
    @lysaait1711 3 місяці тому +2

    Thanks

    • @elastropy
      @elastropy  3 місяці тому +1

      Hi @lysaait1711, you are welcome.

  • @THEKHURRAM100
    @THEKHURRAM100 2 дні тому

    Please share notebook link

  • @rakesh-do1hw
    @rakesh-do1hw Місяць тому

    It's the great video on PINNS. I will really appreciate if you can share the jupyter notebook used as it will help me in practicing code myself, further strengthening my concept on punns. THANKS IN ADVANCE...

    • @elastropy
      @elastropy  Місяць тому

      Hi @rakesh-do1hw, thank you for the kind words! 😊 I’m glad you enjoyed the video. Our source codes are completely free of cost. You can download the Jupyter notebook and source code by following the instructions given in the below link. To download the source codes, you’ll need to complete a small quiz-don’t worry, all the answers can be found in the video! Happy Learning.
      Link - www.elastropy.com/more/unlock-free-source-codes

  • @p.zh.6132
    @p.zh.6132 17 днів тому

    Thanks for sharing, can u tell us how to solve ODEs with uncertain eigenvalues, for example, y'' + λ*y = 0 with BCs: y(0) = y(2π)=0?

  • @dilharawickramasinghe7121
    @dilharawickramasinghe7121 23 дні тому

    Great explanation! Could you share the code please?

  • @patelpavan5479
    @patelpavan5479 3 місяці тому +2

    What is means here 0:1 and 1:2 in x=output [:,0:1] , y=output[:,1:2]

    • @elastropy
      @elastropy  3 місяці тому

      Hi @patelpavan5479, could you please send me the time stamp in the video, at which you saw these?? Also, could you please elaborate your doubt?

    • @patelpavan5479
      @patelpavan5479 3 місяці тому

      ​@@elastropy15:20

    • @elastropy
      @elastropy  3 місяці тому

      Hi @patelpavan5479, thanks for the timestamp. I did it this way to preserve the 2D array shape for consistency in tensor operations.

    • @patelpavan5479
      @patelpavan5479 3 місяці тому

      @@elastropy ok

  • @rajibali4643
    @rajibali4643 3 місяці тому +1

    Please makenthis on SDE please

    • @elastropy
      @elastropy  3 місяці тому

      Hi @rajibali4643, did you mean Stochastic Differential Equations for SDE??

  • @rituparnsingh6554
    @rituparnsingh6554 Місяць тому

    Are we using Tensorflow1.x or 2.x for these codes? I am guessing its the former?

    • @elastropy
      @elastropy  Місяць тому

      Hi @rituparnsingh6554, we use TensorFlow 2.x for these codes. If you install via pip install, it will automatically install TensorFlow 2.x by default. 😊