Understanding Limits and L'Hospital's Rule

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 154

  • @ConceptualCalculus
    @ConceptualCalculus 4 роки тому +158

    I love you, Professor Dave. I was teaching face-to-face classes with pencil-and-paper homework, just like back in the day, when suddenly, due to Covid-19, my classes are all online. I can make reasonably good math instructional videos, but not fast enough to keep up with four different courses in real time. I've been wandering UA-cam looking for good math videos to fit my learning objectives. This one is great. Thank you. --Professor Lisa.

  • @rajendramisir3530
    @rajendramisir3530 6 років тому +189

    A must watch Calculus series for all who are studying this subject. Clear presentation that includes organized content in a textbook format with intelligent, concise and step by step explanation of concepts and worked out examples. I enjoy learning from these videos. Thanks.

  • @emielevenepoel9761
    @emielevenepoel9761 6 років тому +48

    Your channel is absolutely amazing! Thank you for helping students everywhere!

  • @sirxavior1583
    @sirxavior1583 5 років тому +104

    Great video. You taught the rule in a way that saved me from going to the Hospital, lol.

  • @フェフ
    @フェフ 5 років тому +9

    Thanks for the online lecture man!
    My teacher at school is so hopeless, she couldn't taught L'Hospital because there's no L'Hospital explanation on textbooks

    • @Lostwolf16
      @Lostwolf16 5 років тому +5

      lol, that would have sucked bad. I did had good lecture and note but the teacher pulled Eminem on us so hard to understand the lyrics

    • @vunguyen2246
      @vunguyen2246 5 років тому +3

      @@Lostwolf16 :')

  • @thamannaak1643
    @thamannaak1643 3 роки тому +7

    Thanks a lot for your wonderful explanation..Now I am confident with this concept. 🇮🇳

  • @frankhong6313
    @frankhong6313 3 роки тому +14

    Learning calculus for free is so enjoyable. Thanks Prof Dave!

  • @aarush2474
    @aarush2474 5 років тому +8

    This rule is just so neat!

  • @KgH0sTX
    @KgH0sTX 2 роки тому +4

    Finally understood lopital rule after HOURS. Thank you professor!

  • @shenanigun5576
    @shenanigun5576 5 років тому +8

    Thanks Dave!

  • @bibsp3556
    @bibsp3556 3 роки тому +4

    i love when some other smarty has done the maths to explain something that makes sense logically. I remember working towards this in a calc class back as a group in the day, before we worked on this.

  • @awaysabdiwahid3572
    @awaysabdiwahid3572 2 роки тому

    thank you professor Dave i got these lecture after 4 years at the day you uploaded and helped me to understand l'hopital's rule
    thank you again

  • @pareshsings3759
    @pareshsings3759 Рік тому +2

    Your all videos are so informative n easy to understand.n tomorrow is my exam 😅.
    Writing this bcz these videos helped me a lot.love from india❤️.

  • @noon1644
    @noon1644 6 років тому +11

    Thx for everything ♥️

  • @ilove8765
    @ilove8765 2 місяці тому

    At 5:42 , there is an error. If you express -x² to its reciprocal, you should get -1/x².
    So the solution should look like:
    (1/x) × (-1/x²) = -1/x³
    If you differentiate this three times, you should arrive at an answer of 0/6, which is coincidentally also 0

  • @NeoUnfazed
    @NeoUnfazed 2 роки тому

    no words can describe how grateful I am prof ❤

  • @anirudh1835
    @anirudh1835 6 років тому +6

    Thanks love from India!!

  • @Kiky_MedPhysicist
    @Kiky_MedPhysicist 5 місяців тому

    Thank you sir for your dedication and for making this free! 🙏

  • @damien20ntakirutimana96
    @damien20ntakirutimana96 2 роки тому +2

    Thank you Professor Dave, please may you talk about the origin and the statement of L'Hospital rule.

  • @samsunnahar9175
    @samsunnahar9175 2 роки тому +3

    Thanks a lot for organizable, understandable and excellent explanation!!

  • @BalajiS-hs7mz
    @BalajiS-hs7mz 6 років тому +5

    No one can teach as like u sir😁😀😂😀👍👌

  • @aminnima6145
    @aminnima6145 3 роки тому +1

    The best professor in the woooooorld we love youuuuu sir 🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹

  • @sophiiehehe
    @sophiiehehe Місяць тому

    Thank you so mcuh for the explaination! Was very easy to follow along and understand L'Hospital's rules

  • @Dharmendra_k_verma
    @Dharmendra_k_verma 2 роки тому +5

    I m from India 🇮🇳🇮🇳watching your lecture your videos very simply explain me the topic thank you so much sir for your efforts 🙏🙏🙏🙏🙏

  • @adisiebiraramenale8204
    @adisiebiraramenale8204 Рік тому

    Thanks so mach
    Thi is an important
    Concept in
    Learning
    Limit❤

  • @heeeei42
    @heeeei42 3 місяці тому +1

    this was so helpful!

  • @jrok172
    @jrok172 2 роки тому

    This man is a hero!

  • @afan4798
    @afan4798 2 роки тому +1

    From your lecture I got to know many things. ❤

  • @_A__SaketKumar
    @_A__SaketKumar 4 роки тому +3

    many many thanks

  • @weakling5358
    @weakling5358 6 років тому +6

    Thank youuu 🤗🤗

    • @tse278
      @tse278 6 років тому

      stupid girl

    • @Jason-rd1ev
      @Jason-rd1ev 4 роки тому +1

      @@tse278 bruh moment 69420

  • @kimutaiKevin
    @kimutaiKevin 10 місяців тому

    Your explanation is very nice professor ☺️

  • @JinkunYan
    @JinkunYan 8 місяців тому +1

    I finally get why asymptote of the range of function is that!!!!

    • @JinkunYan
      @JinkunYan 8 місяців тому

      I am so happppppppppppyyyyy!!!!!!!!!

  • @ElenaHudson01
    @ElenaHudson01 Місяць тому

    Hi Dave!
    I believe we cannot use L’Hôpitals rule for sin(theta)/theta, this is because we need to know the derivative of this in order to use l’hopital’s, thus we cannot use l’hopitals for us to find the derivative… Am I right? How can we calculate this derivatives without using L’Hôpital’s rule then?
    Great video!

  • @nipunfernando6689
    @nipunfernando6689 4 роки тому +6

    @0:25 By sandwich theorem isn't it =1

  • @nicholasachuz8329
    @nicholasachuz8329 2 роки тому

    I love you professor, you always get me out of trouble, hope I meet you one day to thank you f2f

  • @djdanzo206
    @djdanzo206 8 місяців тому

    i've definitely subscribed , it helps me more than it helps you for sure!!!

  • @kennetheiman8651
    @kennetheiman8651 6 років тому +3

    Thank You! It was great!

  • @indusaranisalgimhana780
    @indusaranisalgimhana780 Рік тому

    Thank you sir...!! Its easy to understand properly

  • @gaiagray3583
    @gaiagray3583 2 роки тому

    Perfect teaching totally understood

  • @nutandhakal5289
    @nutandhakal5289 2 роки тому

    this is absolutely awesome thanks man

  • @mathematicieenockdybala203
    @mathematicieenockdybala203 2 роки тому

    You're the great sir dave

  • @viviandelossantos6085
    @viviandelossantos6085 6 років тому +1

    Thank you!💜

  • @_A__SaketKumar
    @_A__SaketKumar 4 роки тому +2

    thanks

  • @briancruz3551
    @briancruz3551 6 років тому +2

    thankyou so much bro!

  • @marpin6162
    @marpin6162 4 роки тому +2

    You can't use L'Hopital's rule prove that lim (sin(x)/x) as x-->0 = 1. That's a circular argument because in order to prove that the derivative of sin(x) is cos(x) you need to know what value is lim (sin(x)/x) as x-->0.

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  4 роки тому +2

      What? Check out my tutorial on derivatives of trigonometric functions. You just plot the rate of change of sine and you get cosine. It couldn't be simpler.

    • @marpin6162
      @marpin6162 4 роки тому +2

      @@ProfessorDaveExplains I was trying to say that we can't do a formal demonstration of the derivative of sin(x) using l'Hopital's rule. I didn't mean you did it on this presentation. btw, nice video and training exercices

  • @aang7505
    @aang7505 6 років тому +3

    Could you go over indeterminate products please?

  • @astha_yadav
    @astha_yadav 2 роки тому +2

    Many many thanks, sir !!
    I am gonna recommend this playlist to all the suffering 11th grade friends i have xD

  • @nychan2939
    @nychan2939 Рік тому +1

    Good. But is it logical to use L'Hopital's rule to find lim sin (x)/x, as we must know the limit before we differentiate sin(x)? There're so many similar examples.

  • @VijfMiljard
    @VijfMiljard 4 роки тому +1

    What I don't get is this: in the first example of sin x/x, the limit here is the definition of the derivative of sin x at x=0. Then in the same line he writes down cos x as the derivative of sin x which he's not supposed to know as that is exactly the thing he is calculating. Isn't he making justified assumptions?

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  4 роки тому +3

      look earlier in the calculus playlist for a tutorial on finding the derivatives of trigonometric functions, it's quite well derived

  • @edwardchhangte3899
    @edwardchhangte3899 6 років тому +13

    You save me from Hospital

  • @davenewman8744
    @davenewman8744 Рік тому

    Question regarding the limit of x(ln x) = 0, the graph of that function shows there is no limit from the left side, which is why you approached the limit from the right side, but I thought the rule of limits state that a limit can only exist if the limit exists from both sides? There is the limit of peace-wise functions but that still requires the limit of both functions to exist from both sides. I am just assuming there is some limit rule I am missing. Would you be so kind as to elaborate on this?

  • @edwardcorrales5110
    @edwardcorrales5110 3 місяці тому +1

    Sorry Prof Dave but I evaluate your limit at 7:45 and my calculator says "Domain error" because Ln(0) gives domain error. How do you solve this? Thanks in advance.

  • @leraheva8485
    @leraheva8485 5 років тому +1

    Excellent

  • @decylenmilloneslantawan4295
    @decylenmilloneslantawan4295 2 роки тому

    Thank you sir

  • @doyoarero5599
    @doyoarero5599 5 років тому +1

    Thanks sir your my hero

  • @BCdesu
    @BCdesu 6 років тому +10

    Which hospital is that?

    • @celesteadeanes4478
      @celesteadeanes4478 5 років тому +4

      It’s the one in France

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 5 років тому +3

      The one you go to when you think about this too much and get an aneurysm

  • @faridaakaman
    @faridaakaman Місяць тому

    I have a question: How can we know which function we are inverting and placing under the other? Please answer me

  • @curtpiazza1688
    @curtpiazza1688 3 роки тому

    Wow! I finally get it!!!

  • @guuguu7559
    @guuguu7559 3 роки тому

    thanks again sir

  • @sweatypineapple4411
    @sweatypineapple4411 8 місяців тому

    love you dave

  • @whitefeather8387
    @whitefeather8387 Рік тому

    Professor thank u, From 🇮🇳 India😢

  • @johnychinese
    @johnychinese 2 роки тому

    Hey Dave, I'm a bit confused
    Why didn't you use the quotient rule to solve for limx->0 (e^x/x^3)
    Thank you, hope to hear from you soon

    • @SamLuv07
      @SamLuv07 2 роки тому +3

      Rule applies only for when you take derivatives of quotients not for limits. 💜

  • @topiado2073
    @topiado2073 5 років тому +2

    Sir if it is 0/infinity or infinity/zero,,would we apply the L.rule?

    • @cristiansantos5070
      @cristiansantos5070 5 років тому +3

      Topi Ado no sir

    • @topiado2073
      @topiado2073 5 років тому +1

      @@cristiansantos5070 girl#me

    • @cristiansantos5070
      @cristiansantos5070 5 років тому

      Topi Ado sorry!

    • @justabunga1
      @justabunga1 4 роки тому +1

      0/infinity and infinity/0 will yield the limit to be 0 and infinity. An example of these function would be y=ln(x)/x and y=x/ln(x) as x goes to 0 from the right respectively. The limit would go to -infinity and 0.

  • @vasilispesmatzoglou3020
    @vasilispesmatzoglou3020 Рік тому

    So we can't use the rule for the infinity over (infinity - infinity) ?
    Or we have to make this form infinity over infinity and the solve by L'Hospital?

  • @sachingupta-um8ko
    @sachingupta-um8ko 2 роки тому

    Thank u sir!

  • @maysa7491
    @maysa7491 4 роки тому

    YOU SAVED ME

  • @NilEoe
    @NilEoe 7 місяців тому

    I don't understand the last exercise (ln x/x^2): When deriving once, I get (1/x)/2x. However, the 1/x then gets derived to - 1/x^2, and I don't see where the minus sign went in the answer? Altough I get that your answer must be right since the function is curving up and not down and so it makes sense that the second derivative is positive when x -> infinity. Can anyone explain?

  • @reynaldowify
    @reynaldowify 5 років тому +2

    Hi. Have seen recently an MIT video which shows a failure in L ´Hospital rule. Lim for x tending to infinite from (x + cos x) / x Thanks
    I admire your videos

    • @NoActuallyGo-KCUF-Yourself
      @NoActuallyGo-KCUF-Yourself 2 роки тому +1

      Did you mean (x + sin x) / x?
      (x + cos x) / x does not apply, because it does not produce an indeterminate form.
      L'Hopital's rule didn't fail. The failure was attempting to use it when it doesn't apply.

  • @johnhartney7576
    @johnhartney7576 5 років тому +1

    Amazing

  • @shivakrishna5334
    @shivakrishna5334 5 років тому +2

    Super sir

  • @raahimkhan9552
    @raahimkhan9552 Рік тому

    love you sir

  • @shaidasabr5272
    @shaidasabr5272 Рік тому

    what about when x approache to zero for absolute value of x over x does the rule work?!

  • @syedaryahana824
    @syedaryahana824 4 роки тому +2

    I am 10 years old and finish the whole calculus course smart ha

    • @zzz9899
      @zzz9899 3 роки тому +1

      पागल हो क्या

  • @HannahLisomeoneunique
    @HannahLisomeoneunique 3 роки тому

    For the question 1 at the end, why does limx->∞ 2x-9/6x+7 = limx->∞ 2/6 ? what happened to the -9 and +7 as I got to the part where i differentiate n wasnt sure what to do next. thank you for the great vid anyways

    • @designingworld6611
      @designingworld6611 2 роки тому +2

      He took the derivative again
      derivative of 2x-9/6x+7 = 2/6

  • @samriddhbhardwaj3913
    @samriddhbhardwaj3913 8 місяців тому

    4:28 I guess here L'hopital rule will also give correct answer .

  • @LUXURYLIFESTYLECLIPS77
    @LUXURYLIFESTYLECLIPS77 3 роки тому

    Thank 🥰

  • @ガアラ-h3h
    @ガアラ-h3h Рік тому

    2:15 Actually you can’t use L’Hop here

    • @Ghostslicer442
      @Ghostslicer442 10 місяців тому

      how so?

    • @JinkunYan
      @JinkunYan 8 місяців тому

      You need to give the reason to prove you are right, rather than said' you are wrong'

    • @williamsantos9471
      @williamsantos9471 Місяць тому

      ​@JinkunYan The thing is, to rigorously prove that d/dx (sin (x)) = cos(x), you should actually use the limit definition, not just plot some points.
      While you're proving with the limit, you'll have to know the result of
      lim_(h->0) sin(h)/h
      Similarly, you'll also need to know
      lim_(h->0) (cos(h) - 1)/h
      The traditional way to prove these limits is to geometrically show that, for an angle θ near 0
      1 >= sin(θ)/θ >= cos(θ)
      As θ approaches 0, the expression is "squeezed" by 1 on both sides, so it has to be 1
      From here, the other limit is not that bad, you can use the pythagorean identity and use the result of this limit we've found
      So basically, when you use L'Hôpital's rule, you've to know already the derivative of sine, but to show what the derivative for sine is, you actually have to know the result for this limit already

  • @statxs
    @statxs Рік тому

    this channel def the best at explaining shit

  • @luljhul1758
    @luljhul1758 3 роки тому +2

    Thank you jesus

  • @tGoldenPhoenix
    @tGoldenPhoenix 3 роки тому

    Done.

  • @Thedrunkguy1
    @Thedrunkguy1 9 місяців тому +6

    I still don't get it

    • @ssaafmoon1998
      @ssaafmoon1998 7 місяців тому +2

      I got it after 6th time 🥹

    • @ArnavGarg-rl6qh
      @ArnavGarg-rl6qh 7 місяців тому +1

      It ain't that hard by solving problems you will understand is better. 😊

  • @anwarshifaw7481
    @anwarshifaw7481 6 років тому +1

    i loved it

  • @joannali6720
    @joannali6720 4 роки тому +1

    I dont know why sinx derivative to cosx

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  4 роки тому +4

      Check out my tutorial on derivatives of trig functions, I derive them graphically.

  • @wrathcs
    @wrathcs 4 роки тому

    what if g(x)=1 for example and we apply this, we get f'(x)/0 if defined then it's infinity. just guessing not sure, HELP

  • @mark_tilltill6664
    @mark_tilltill6664 4 роки тому +2

    Lim (x->inf, (x+cos(x))/x ) is indeterminate, but L'hopital's rule fails.

  • @alexwu69700
    @alexwu69700 6 років тому +2

    You're awesome

    • @tse278
      @tse278 6 років тому

      very bad

  • @SAM-ph6yg
    @SAM-ph6yg 9 місяців тому +1

    Thank you Jesus

  • @comicawk
    @comicawk 8 місяців тому

    i think the second comprehansion questoin is wrong because its ans is not maching mine i have done several times

  • @ygreaterr
    @ygreaterr 4 роки тому +1

    i love infinity

  • @mramadevi5014
    @mramadevi5014 6 років тому +6

    How to define a limit using real life examples

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  6 років тому +9

      there are no real life examples! this is mathematics.

    • @gokulabisheak3653
      @gokulabisheak3653 6 років тому +2

      There is no real life use, it's pure mathematics, but limits are the answer we get when we substitute the closest value to the variable, when we won't get a definete value when we substitute the exact variable.

    • @brittniep9219
      @brittniep9219 5 років тому +2

      It's important but really often more background for integrals and derivatives which 100% have real-world applications :)

  • @sadrevolution
    @sadrevolution 4 роки тому +1

    I thought this was going to show why L'Hopital's rule works (graphically? I don't know).

  • @Birparaboyz
    @Birparaboyz 6 місяців тому +1

    Bro casually solves infinity 🎉

  • @ElvisAboagye-s7p
    @ElvisAboagye-s7p 9 місяців тому

    Great

  • @ericpham7974
    @ericpham7974 2 роки тому

    How computer and human solve the no solution problem?

  • @binyammamo707
    @binyammamo707 2 роки тому

    I have confusion:
    You said:
    0*(infinity) = indeterminate (but 0*any number=0 [right?])
    and again (infinity)^0 = indeterminate (but anything raised to zero equals 1, right?)
    and again 1^(infinity) = indeterminate (but one raised to any number equals 1, right?)
    So what do you mean by that. In other words what kind of expressions do you call INDETERMINATE?

  • @aselim20.
    @aselim20. Рік тому +1

    I wrote it.

  • @flameon8185
    @flameon8185 4 роки тому +2

    just came to know how to pronounce this word !!

  • @ashoknadan3864
    @ashoknadan3864 6 років тому +1

    good sir.

  • @arcaneinane
    @arcaneinane 2 роки тому

    i

  • @GustavoMerchan79
    @GustavoMerchan79 Рік тому

    1:52 WRONG. Lim x->0 (sin x)/x can't be solved using L'Hopital's rule. Because the derivative of Sin x = Cos x is demonstrated by solving Lim x->0 (sin x)/x , the same that we are trying to solve, it means circular reasoning and that's invalid (and really bad). Zero points to an exam question if you do that. It's a shame you did that to an otherwise great video.

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  Рік тому +1

      What? You don't need limits to get the derivative of sin x.

    • @GustavoMerchan79
      @GustavoMerchan79 Рік тому

      @@ProfessorDaveExplains the very definition of ANY derivative is a limit.

    • @ProfessorDaveExplains
      @ProfessorDaveExplains  Рік тому

      @@GustavoMerchan79 Yeah but you can do it graphically.

    • @GustavoMerchan79
      @GustavoMerchan79 Рік тому

      @@ProfessorDaveExplains You can conjecture a derivative graphically but can't prove it graphically. You prove a derivative from its definition, which is always a limit. Instead and incidentaly to my point, you need a graphical, or rather geometrical proof to find Lim x->0 (sin x)/x. So back to the original point, you can't formally use L'Hopital's rule to find the limit x->0 (sin x)/x because the derivative of sin x uses limit x->0 (sin x)/x to find cos x, hence the circular reasoning.

    • @Velnio_Išpera
      @Velnio_Išpera Місяць тому

      The main problem there is an equal sign between Lim x->0 (sinx)/x and Lim x->0 cosx