Hilbert Spaces 1 | Introductions and Cauchy-Schwarz Inequality

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 11

  • @lukephillips7239
    @lukephillips7239 2 місяці тому +10

    Im trying to teach myself wuantum mechanics and this tipic is quite relevant.

    • @brightsideofmaths
      @brightsideofmaths  2 місяці тому +4

      Indeed! For quantum mechanics you need a good knowledge of Hilbert spaces and operators on them.

    • @sonicmaths8285
      @sonicmaths8285 2 місяці тому

      Hello Bewwy Cwipke

  • @kyteris0624
    @kyteris0624 2 місяці тому +6

    Professor, when you introduce the definition of inner product around 5:45, I wondered why you wrote it as a linear with respect to second component. By the definition of the inner product, it is a linear with respect to the first component. For the second component, if the field is a real number, this is not a problem, but if the field is a complex number, it will be conjugate.

    • @brightsideofmaths
      @brightsideofmaths  2 місяці тому +5

      There are two conventions around how to define the inner product. I chose this one because it has advantages in remembering some formulas.

  • @teddy05p
    @teddy05p 2 місяці тому +4

    Amazing:) please keep it up, im doing this course right now, interested to see your teaching in comparison to my professors :)

  • @itscristianodasilva
    @itscristianodasilva 2 місяці тому

    This video came at the perfect time, I have this on my linear algebra midterm

  • @ni2371
    @ni2371 2 місяці тому

    Hey, first I (hopefully a future physicist) want to say I really love and admire your work! Thank you. Secondly, I'm really curious how you managed to upload videos of the same topics but with a dark background without recording them from scratch.

    • @brightsideofmaths
      @brightsideofmaths  2 місяці тому +2

      Thanks a lot. And thanks for the support. The dark version is just colour swapping.

    • @ybc8495
      @ybc8495 Місяць тому

      @@brightsideofmaths color of conjugate.