Simple & semi- simple Module [Definition & Theorems] part-1

Поділитися
Вставка
  • Опубліковано 18 гру 2024
  • Simple Module is isomorphic to R/I Where I is maximal left ideal (part-2)
    • Simple Module is isomo...
    Abelian group generated by X1 and X2 isomorphic to Z/6Z or Z/8Z (part-3)
    • Abelian group generate...
    Link of fundamental theorem 🌼
    • Fundamental Theorems o...
    Link of proper/ improper 🌼
    • what is the difference...
    For other queries ..you can also follow me on instagram.....
    Link 🎐
    / hashtg_study

КОМЕНТАРІ •

  • @Shehrozliaqat2551
    @Shehrozliaqat2551 Рік тому

    Very beautiful hand writing

  • @Code_mania24
    @Code_mania24 4 роки тому

    Excellent.... Nice handwriting

  • @aradhnaekka4612
    @aradhnaekka4612 3 роки тому

    Mam iske just neeche wala theorem kon se part me pdhai है

  • @mathseasysolution1913
    @mathseasysolution1913 3 роки тому

    M ko R ka homomorphic image prove karne ke liye one'one to dikhana jaruri nahi hai na mam vo to fundamental theorem se each homomorphic image uske kisi quotient module ke isomorphic hota hai

  • @mathseasysolution1913
    @mathseasysolution1913 3 роки тому

    Weldifined one one onto homomophism to ham tab dikhate jab R upon I se M me koi mapping defined kiye hote use isomorphism prove karna hota

  • @ushamishra4589
    @ushamishra4589 4 роки тому

    Excellent

    • @prachi_
      @prachi_  4 роки тому

      Thank you! Cheers!

  • @Harpreetkaur-kc3mw
    @Harpreetkaur-kc3mw 4 роки тому

    Mam apne msc kah se ki he

  • @kremmanie
    @kremmanie 3 роки тому

    What language is that? Great notes.

    • @prachi_
      @prachi_  3 роки тому

      🙂

    • @prachi_
      @prachi_  3 роки тому

      Audio is in 'hindi' language

  • @priyankaassistantprofessor2414
    @priyankaassistantprofessor2414 3 роки тому

    Mam how can we say that if I is max. Ideal then R/I han no proper subgroup

    • @prachi_
      @prachi_  3 роки тому

      Let R be a commutative ring with unity. Let I be a proper ideal of R.
      I is defined to be a maximal ideal iff no proper ideal of R is a proper superset of I.
      I is a maximal ideal iff R/I is a field.

    • @prachi_
      @prachi_  3 роки тому

      We have a whole proof for this

  • @priyankaassistantprofessor2414
    @priyankaassistantprofessor2414 3 роки тому

    Plzz makes some videos on mathematical aspects of seismology ....

  • @geniusmathematics9123
    @geniusmathematics9123 3 роки тому

    3:59 पर आपने कहा कि .....
    A = Phie or A=M
    लेकिन M simple module hain...Jiske definition ke anusar...
    Tumhe .....Yh kahna chahiye tha ki..
    A ={0} or A =M
    .... Correct or not...
    Tumhara solution aaur sb sahi hain.. Lekin M के simple module hone ke ka mtlb...Wah nhi hota jo aapne A Ke liye likha hain

  • @pkrao6599
    @pkrao6599 3 роки тому

    Plz provide ur handmade notes og abstract algebra

  • @SandhyaSingh-is1gz
    @SandhyaSingh-is1gz 4 роки тому

    You explained very well 🙏

    • @prachi_
      @prachi_  4 роки тому

      Thnku dear💕

  • @anjalivishwakarma1996
    @anjalivishwakarma1996 4 роки тому

    Tq so much ....

  • @m.hassanihsan6838
    @m.hassanihsan6838 3 роки тому

    14 mint py apny one one galt solve kia ha
    rx =sx
    Tha
    Apny kat kr
    r=s
    Kaisy likh dia
    Kuenky r,s to ring sy hain
    Or x module sy