You are a true maths genius if you can solve this...

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 32

  • @brnmcc01
    @brnmcc01 5 днів тому +4

    You can also simplify the answer a little bit to take the natural log of the square root of 3, since a^(log(x)/2) is the same as a^(log(sqrt(x))). So X would be equal to e^(W(log(sqrt(3)))×2) in plain text.
    2.1247993830225090335085882479846816946346241964809854993870214081

    • @marilynman
      @marilynman 4 дні тому +1

      You have a typo on: a^(x/2) is the same as a^(sqrt(x))
      It should be: a^(log(x)/2) is the same as a^(log(sqrt(x)))

    • @brnmcc01
      @brnmcc01 4 дні тому

      @@marilynman You're right, fixed it, thx.

  • @rishabvaid2059
    @rishabvaid2059 День тому

    1. Iterative Approximation:We can rewrite the equation as:√x = logx(3)or equivalently:x = (logx(3))²We can start with an initial guess for x (let's say x = 2) and iteratively refine it using the equation above.Iteration 1: x = (log₂(3))² ≈ 2.46Iteration 2: x = (log2.46(3))² ≈ 2.2Iteration 3: x = (log2.2(3))² ≈ 2.3If we keep iterating, the value will converge towards a solution. This method is not very efficient, but it demonstrates a numerical approach. A more sophisticated numerical method like the Newton-Raphson method would converge much faster.
    While there isn't a neat, closed-form solution, numerical methods provide approximations. Using iterative techniques or software capable of handling the Lambert W function will yield a solution close to x ≈ 2.2. A more advanced numerical approach would give you a more precise answer.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 5 днів тому +1

    X^Sqrt[X]=3 X=e^(2W(Ln(3)/2))=e^(2W(Log[e^2,3]))

  • @ganymed1236
    @ganymed1236 5 днів тому +1

    Well done! 😊

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 5 днів тому +1

    Ln(3)/2=Log[e^2,3] Input I just proved that it could be simplified.
    Ln(3)/2 =Log(e^2, 3)
    Results
    True
    True

  • @Fc.roblox_1152
    @Fc.roblox_1152 2 дні тому

    from scipy.optimize import fsolve
    # Define the equation y^(2y) = 3
    def equation(y):
    return y**(2*y) - 3
    # Find the value of y that solves the equation
    y_solution = fsolve(equation, 1.2)[0] # Initial guess is 1.2
    # Calculate x from y
    x_solution = y_solution**2
    y_solution, x_solution

  • @berntfritiofulveborn3163
    @berntfritiofulveborn3163 5 днів тому +2

    Really nice presentation but could you link to some good Lambert function calculators 👍🙂

  • @rexford9019
    @rexford9019 3 дні тому

    Or you can raise both sides to the 1/√x power and then multiply both sides by -1/2, then apply W function.

  • @_Grative
    @_Grative 2 дні тому

    This is just one of the solutions, when you take the natural log you need to add that 2niπ brother

  • @ManojkantSamal
    @ManojkantSamal 5 днів тому +1

    *=read as square root
    ^= read as to the power
    According to the question
    X^(*x)=3Take the square
    (X^(*x)}^2=3^2
    X^x=3^2
    (X^x)^(1/x)=(3^2)^(1/x)
    X=3^(2/x)
    Take the log
    X=9^(1/x)

    • @liamipiami1468
      @liamipiami1468 4 дні тому +1

      You need to have x on one side you cant just say x = x

  • @PerezKwadwoAwuah
    @PerezKwadwoAwuah 4 дні тому

    I don’t know if my method is also right but I got a different answer though. Let’s see
    Let y = sqrt(x)
    yln(x) = ln(3)
    (1/2)yln(x) = (1/2)ln(3)
    yln(y) = ln[sqrt(3)]
    e^(yln(y)) = e^(ln[sqrt(3)])
    ye^y = sqrt(3)
    W(ye^y) = W(sqrt(3))
    y = W(sqrt(3))
    But y = sqrt(x)
    sqrt(x) = W(sqrt(3))
    (sqrt(x))^2 = [ W(sqrt(3)) ]^2
    x = [ W(sqrt(3)) ]^2
    Is it?😶

  • @SidneiMV
    @SidneiMV 2 дні тому

    √x^√x = √3
    √xln√x = ln√3
    ln√x = W(ln√3)
    √x = e^W(ln√3)
    x = e^[2W(ln√3)]

  • @porta_patrols
    @porta_patrols 5 днів тому +1

    cool!

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 5 днів тому +1

    It’s in my head

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 5 днів тому

    (x ➖ 3x+3).

  • @lucatherine4089
    @lucatherine4089 17 годин тому

    (ln √x) e^(ln √x) = ½ ln 3
    ⇒ ln √x = W(½ ln 3) = (½ ln 3)/√x
    ⇒ x = [(½ ln 3)/ W(½ ln 3)]²,
    ∴ x = [(½ ln 3)/ W_0(½ ln 3)]² ≈ 2.1247993830225090335085882479846816+

  • @ManojkantSamal
    @ManojkantSamal 5 днів тому

    X is in between 2 &3
    Respected Sir, Good evening... Pls get me the whole of Lambert aw function....

  • @nishasunil207
    @nishasunil207 5 днів тому +2

    How you got that approximate answer?

  • @liejdbdj-g6
    @liejdbdj-g6 5 днів тому

    미국 어학연수 생활비 대출 좀 해줘 대출좀 그런데 난 대출 안좋아하고 소출 좋아해 소출

  • @ЛеонидФедяков-ъ9я
    @ЛеонидФедяков-ъ9я 5 днів тому

    Too many words.

  • @liejdbdj-g6
    @liejdbdj-g6 5 днів тому

    랩 좀 그만해 😠

  • @prollysine
    @prollysine 5 днів тому

    let u=Vx , Vx*lnx=ln3 , u*ln(u^2)=ln3 , 2*u*lnu=ln3 , u*lnu=(ln3)/2 , lnu=W((ln3)/2) , u=e(W((ln3)/2) , Vx=e^(0.376838695) , Vx=~ 1.45767 ,
    Vx=~ 1.45767^2 , x=`~ 2.1248 , test , x^Vx= 2.1248^1.45767 --> 3 , OK ,