A Differential Equation With An Exponential

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 6

  • @Sugarman96
    @Sugarman96 5 місяців тому +6

    The first method is a bit excessive. You get to a separable equation, but the original equation was already separable.

  • @tixanthrope
    @tixanthrope 5 місяців тому

    Thanks for the video as always.
    Shouldn't you address that k > - e^x is necessary for the solution to make sense?

  • @gelbkehlchen
    @gelbkehlchen 9 днів тому

    Solution:
    y’ = e^(x-y) ⟹
    dy/dx = e^x/e^y |*dx*e^y ⟹
    e^y*dy = e^x*dx |∫() ⟹
    ∫e^y*dy = ∫e^x*dx ⟹
    y = ln|e^x+C| ⟹ y’ = e^x/(e^x+C)
    Does the solution fit into the differential equation?
    left side: e^x/(e^x+C)
    right side: e^(x-ln|e^x+C|) = e^x/e^(ln|e^x+C|) = e^x/(e^x+C)
    left side = right side everything is o.k.

  • @archangecamilien1879
    @archangecamilien1879 5 місяців тому

    One of those "separable"-ones, lol, probably...that N, M-thing or whatever...rewrite it as dy/dx = e^x (e^{-y}), etc, and then put all the x's on one side, all the y's on the other, etc...I forgot how you do all that mindless calculation, lol...

  • @rob876
    @rob876 5 місяців тому +3

    y' = e^x/e^y
    ∫e^y dy = ∫e^x dx
    e^y = e^x + c
    y = ln(e^x + c)

  • @viktor-kolyadenko
    @viktor-kolyadenko 5 місяців тому

    And k >0.