Find the Area of the Square

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 46

  • @tombufford136
    @tombufford136 9 місяців тому +17

    At a quick glance: Using the rule : two perpendicular chords of a circle, the products of the lengths of the intersecting sections of the two perpendicular lines are equal. Drawing a horizontal line through 'o' intersecting perpendicularly the right side of the square and dividing the side into two lengths of distance 'a' each .Hence 2 * a = square side length. 2 * a also equals the left part of the horizontal chord. Applying our rule of chords: 2 * a * 1 = a * a. Hence a = 2 and the square side length = 4. The area of the square is 4 * 4 = 16.

    • @andrewduncan1217
      @andrewduncan1217 8 місяців тому +2

      That is how I solved it.

    • @arnoygayen1984
      @arnoygayen1984 8 місяців тому +4

      Its called the power chord theorem and they are not required to be perpendicular

  • @freebeerecords
    @freebeerecords 5 місяців тому +1

    Intersecting chords theorem is the way to go. Then it becomes 1 x a = a/2 x a/2, so a=4 and a^2 =16 thanks for a nice challenge!

  • @ambarish987
    @ambarish987 8 місяців тому +1

    Solution using trigonometry:
    I'm considering a to be the point near the text a.
    Angle Bao = angle oaB since triangle Bao is isosceles triangle
    Angle AaB = Angle oBF since aBF is a right angle due to property of circle.
    Angle oBF = Angle BFo
    Hence, Angle AaB = Angle BFo
    Hence, tan of both will be equal.
    Assume x to be side of the square.
    Tans of both.
    x/(x/2) = (x/2)/1
    x=4
    Area of square is 16.

  • @derwolf7810
    @derwolf7810 9 місяців тому +2

    Per construction line(E,B) has length of the square root of a.
    ==> a/2 = sqrt(a)
    sqrt(a) = 2
    ==> a^2 = 16

  • @KipIngram
    @KipIngram 2 місяці тому

    Let the circle have radius R and be centered at our origin. Then the top right of the square is at coordinates x = R-1, y = R - 0.5. By the Pythagoras's law, we have
    R^2 = (R-1)^2 + (R-0.5)^2
    R^2 = R^2 - 2*R + 1 + R^2 - R + 0.25
    R^2 = 2*R^2 - 3*R + 5/4
    R^2 - 3*R + 5/4 = 0
    This has roots of R = 2.5 and R= 0.5. The R=0.5 solution is clearly inappropriate, so we take R = 2.5. Now the square side length is 2*R - 1, so we plug in R = 2.5 and get side length 4, so
    Blue Square Area = 16
    Q.E.D.

  • @MathEducation100M
    @MathEducation100M 8 місяців тому +2

    Nice video

  • @bunkusboo
    @bunkusboo 8 місяців тому +2

    Y'all are making this way more complicated than it needs to be. Draw a triangle PBF, then let the line BE make two smaller triangles PEB and BEF. Per Thales' theorem of inscribed angles that lie on a diameter, we know that PBF is a right triangle. Therefore, our three triangles are similar, because the two smaller are also right triangles that also share one additional angle with PBF by virtue of it being the same corner. We also know that if triangles share the same angles, then the ratio of side length must also be the same, and if length BE is half of length PE, then length EF (1) must be half of BE. Therefore BE is 2, BC is 4, and area of the square is 16.

  • @gelbkehlchen
    @gelbkehlchen 9 місяців тому +2

    Solution:
    x = side of the square.
    Euclid's height theorem:
    x*1 = (x/2)² |-x ⟹
    (x/2)²-x = x²/4-x = x*(x/4-1) = 0 |either x1 = 0 [no importance for this task] or x/4-1 = 0 ⟹ x = 4 ⟹ x² = 16

    • @eb1684
      @eb1684 9 місяців тому +1

      Tooo complicated! Just use Logs.

    • @gelbkehlchen
      @gelbkehlchen 9 місяців тому

      @@eb1684 Please explain to me exactly!

    • @eb1684
      @eb1684 9 місяців тому +1

      Just having some fun!
      "Jet Jackson" used that expression on his TV program in the 1950's.
      To some it was quite funny, being preposterous.
      You are probably too young (lucky).
      @@gelbkehlchen

    • @syed3344
      @syed3344 9 місяців тому +2

      ​he is trying to look cool thinking we don't know bout logarithms😂​@@gelbkehlchen

  • @NimitSatsangi
    @NimitSatsangi 8 місяців тому +2

    brainstorming , still too easy

  • @rupom_1670
    @rupom_1670 9 місяців тому +1

    I got the 1st equation on my own
    Had to watch the viideo forr the 2nd one

  • @victorgorelik7383
    @victorgorelik7383 8 місяців тому

    4=PE=2*EB=4*EF (similar right triangles with tangent =1/2)

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 6 місяців тому

    I wanted to say the Same Like Tom Bufford

  • @carlosterra9287
    @carlosterra9287 8 місяців тому +1

    Cool

  • @Okkk517
    @Okkk517 9 місяців тому +2

    Secant- tangent theorem is suitable to this problem: (a/2)^2=(1)(a) ====> a^2=16.

  • @dileepmv7438
    @dileepmv7438 3 місяці тому

    Better to use the intersecting chord theorem

  • @santiagoarosam430
    @santiagoarosam430 8 місяців тому

    Lado del cuadrado =2a
    Potencia del punto medio de la cuerda vertical respecto a la circunferencia =1*2a=a^2 >>> a=2 >>> Área del cuadrado =(2*2)^2=16
    Un saludo cordial.

  • @TheChamp04
    @TheChamp04 9 місяців тому +1

    1:02 i didn't understand how BE = a/2, pls explain

    • @belowtale3414
      @belowtale3414 9 місяців тому

      PF is radius and its perpendicular to BC so its go through midpoint of BC which is E

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 місяців тому

    Let 2s×2s be the square, r be the radius of the circle, then 2s+1=2r, r=s+1/2, and (s+1/2)^2=r^2=s^2+(r-1)^2=s^2+(s-1/2)^2, s^2=2s, as s not zero, s=2, therefore the area of the square is 4×4=16.😊

  • @Ramkabharosa
    @Ramkabharosa 8 місяців тому +1

    Let AB meet the circle at G & draw a perpendicular from G to meet PO at H.
    Since AB is parallel to PF, ∠GOP=∠ BOF. So we get |AG| = |PH| = |EF| = 1.
    By the tangent-secant theorem from the point A, we get |AP|² = |AG|.|AB|.
    So (a/2)²=(1)(a). ∴ a²/4=a, so a(a-4)=0. Since a>0, a=4. ∴ area(ABCD)=16.

    • @ummhii4200
      @ummhii4200 8 місяців тому

      Its 16 the point 0 is from circle not on square

  • @AnwashaBasu
    @AnwashaBasu 9 місяців тому +2

    Good.

  • @eb1684
    @eb1684 9 місяців тому +2

    Why not just use logarithms?

    • @84com83
      @84com83 8 місяців тому

      How?

    • @eb1684
      @eb1684 8 місяців тому +1

      You must be kidding. We learned logs in 6th grade (age 12) and also how to use a slide rule. But we were smarter than most, especially in the sciences. @@84com83

  • @minhucle9593
    @minhucle9593 7 місяців тому

    Why it doesn't work lmao?

  • @rachidmsmdi6433
    @rachidmsmdi6433 9 місяців тому

    X=(x/2)²
    X=4
    X²=16🤔💚💙💜

  • @ShivamMishra-uy5qg
    @ShivamMishra-uy5qg 9 місяців тому +2

    Bro this can be solved using trigonometry
    As
    EF = 1 UNIT
    ANGLE BEF = 90 DEGREES
    THUS BF= 2 UNIT
    AND BE= √3
    THUS BC =2×√3
    AREA ABCD = (2√3)^2=12 UNIT

    • @-Hellow-
      @-Hellow- 9 місяців тому +1

      its not a 30-60-90 triangle

  • @edgardomunoz5275
    @edgardomunoz5275 7 місяців тому

    profesor, practique caligrafía, sus letras y números son pesimos😅😅😅

  • @madaunn42221
    @madaunn42221 9 місяців тому

    it is not given that EF is on diameter. you just presumed it.

    • @Anmol_Sinha
      @Anmol_Sinha 9 місяців тому +1

      Let's prove it.
      As BC is a chord we can draw radius of perpendicular to it.
      Also ad is tangent(given in diagram) so radius OT(say) is perpendicular to it.
      Now consider the parallel lines ad and BC. They have perpendicular OT and OF which pass through the same point O.
      Therefore, TF is a transversal and makes a line cutting the circle to form a chord which is the diameter as OT passes through O

  • @chucksucks8640
    @chucksucks8640 7 місяців тому

    That isn't a square because only a square can the inscribed inside of a circle.

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 місяців тому

    Let 2s×2s be the square, r be the radius of the circle, then 2s+1=2r, r=s+1/2, and (s+1/2)^2=r^2=s^2+(r-1)^2=s^2+(s-1/2)^2, s^2=2s, as s not zero, s=2, therefore the area of the square is 4×4=16.😊

  • @misterenter-iz7rz
    @misterenter-iz7rz 9 місяців тому

    Let 2s×2s be the square, r be the radius of the circle, then 2s+1=2r, r=s+1/2, and (s+1/2)^2=r^2=s^2+(r-1)^2=s^2+(s-1/2)^2, s^2=2s, as s not zero, s=2, therefore the area of the square is 4×4=16.😊

    • @aravindsurendran
      @aravindsurendran 8 місяців тому +1

      Isn’t this his solution where a is just substituted with 2s? It’s the same 2 equations. Do you find this easier to understand?