Introduction to Tensors: Zero / First / Second Order Tensor

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 23

  • @fufaev-alexander
    @fufaev-alexander  11 місяців тому +2

    More: en.fufaev.org/tensors

  • @TheLethalDomain
    @TheLethalDomain 11 місяців тому +3

    This is a very elegant and simple way of introducing tensors. I look forward to your future videos.

  • @englishforfunandcompetitio248
    @englishforfunandcompetitio248 11 місяців тому

    Impatiently waiting for the next one in the series 😊.

  • @Akash_Saxena_2013
    @Akash_Saxena_2013 11 місяців тому +2

    Nice explanation...Thank you!

  • @electroniceyes36
    @electroniceyes36 11 місяців тому

    Waiting for the next video❤❤

  • @FelipeMatos-pq8on
    @FelipeMatos-pq8on 12 днів тому

    Do you have some video about Euler's number?

  • @ianthehunter3532
    @ianthehunter3532 11 місяців тому +1

    From what you told us in this video, it all looks like it's the same as matrices? What's different from them, with context given in the video?

    • @pacolibre5411
      @pacolibre5411 11 місяців тому +1

      In this context, a matrix is a specific kind of tensor. Specifically, an order 2 tensor.
      You can imagine an order 3 tensor as being some sort of “matrix cube” with rows, columns, and then depth planes.
      “Tensor” is the collective term for all things mentioned in the video.

    • @ianthehunter3532
      @ianthehunter3532 11 місяців тому

      @@pacolibre5411 So tensor would be a kind of matrix inside of matrix? I don't see that mentioned in the video? It only shows scalars sigma inside a matrix at the end, or are those sigmas matrices?

    • @pacolibre5411
      @pacolibre5411 11 місяців тому +1

      @@ianthehunter3532 There is no matrix in a matrix. The tensors only contain numbers. For their components
      Order 0 tensor: Scalar
      Order 1 tensor: Vector
      Order 2 tensor: Matrix
      Order 3 tensor: 3D analogue of a matrix
      Order 4 tensor: 4D analogue of a matrix
      And so on with as many dimensions as you need.
      This is what I mean by a “collective term.” Scalars are a type of tensor. Vectors are also a type of tensor. All vectors are tensors, but not all tensors are vectors.

    • @ianthehunter3532
      @ianthehunter3532 11 місяців тому

      ​@@pacolibre5411 Right, I see what was meant then. Thanks a lot!

  • @dydx_mathematics2
    @dydx_mathematics2 6 місяців тому

    What does the last thing mean ?

  • @NovaLegacy-by6uv
    @NovaLegacy-by6uv 11 місяців тому

    I live in the middle east since the digital paymeny is not avaible, how can I buy your book then?

  • @hydropage2855
    @hydropage2855 Місяць тому +1

    Are you using an AI to turn your German speech into English speech?

  • @aibdraco01
    @aibdraco01 5 місяців тому

    Thanks a lot.

  • @Jeff-zc6rr
    @Jeff-zc6rr 10 місяців тому +4

    That is the laziest definition of a tensor that they are generlization of matrices. They really aren't.

    • @ram-my6fl
      @ram-my6fl 3 місяці тому +1

      he said generalization of scalars, vectors and matrices not just matrices

  • @flamingowrangler
    @flamingowrangler 11 місяців тому

    why the AI voice? i liked your voice in your other videos

    • @fufaev-alexander
      @fufaev-alexander  11 місяців тому +1

      I no longer own a microphone. (If you're wondering why... it's "complicated". :D Short answer: extreme minimalism)

    • @flamingowrangler
      @flamingowrangler 11 місяців тому

      @@fufaev-alexander ah, that’s fair

  • @crehenge2386
    @crehenge2386 8 місяців тому

    I like RAOWH WECTORS 😂😂😂 some of this information is technically kinda correct, but not usefull when you start working with tensors. The reason why is it misses the biggest most important part of the tensors just to make people feel smart.

  • @englishforfunandcompetitio248
    @englishforfunandcompetitio248 11 місяців тому

    And one more thing to mention dear.....this AI voice is not acceptable. Get back to your own original voice.