A Very Quartic Equation | Can You Solve?

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 21

  • @SyberMath
    @SyberMath  9 місяців тому

    Proving a quartic inequality (Sum of Fourth Powers): ua-cam.com/video/nCburjt1UgU/v-deo.html

  • @davidseed2939
    @davidseed2939 9 місяців тому +4

    4:50 if z=1, then xy=1 gives x=y= 1 OR x=y=-1. ie a fourth solution.
    This corresponds with the fact that the equation is symmetric in x,y,z and so the solution must be symmetric.
    ie the solution set is x=y=z=1 and all permutations of (x,y,z)=(1,1,-1)

  • @snejpu2508
    @snejpu2508 9 місяців тому +7

    I used AM>=GM formula: (x^4 + y^4 + z^4 + 1)/4 = 4throot(x^4 * y^4 * z^4 * 1). It works, as x^4, y^4 and z^4 are always nonnegative. After a few steps, you get x^4 + y^4 + z^4 >= 4xyz - 1. So, the relation becomes an equation, if x^4 = y^4 =z^4. It is still a little tricky, as you have to be careful with the signs. It's not the same as x=y=z apparently, as it only gives the solution (1,1,1)... I'm not sure how you could find the rest of solutions in an universal way from there. Or you could just try out all 3 possibilities with +/- 1 and see, what happens.

    • @SyberMath
      @SyberMath  9 місяців тому

      Good to see you! ☺️

    • @snejpu2508
      @snejpu2508 9 місяців тому

      @@SyberMath Hi! I often follow your content, but only comment on problems not too obvious and not too difficult for me. ;-)

  • @ayushrudra8600
    @ayushrudra8600 9 місяців тому +9

    4:50 you missed (-1, -1, 1)

    • @SyberMath
      @SyberMath  9 місяців тому +1

      😄😄

    • @mr.d8747
      @mr.d8747 6 місяців тому

      *Yeah, a quartic is supposed to have four solutions*

  • @NadiehFan
    @NadiehFan 9 місяців тому +3

    I wonder how at 4:48 you could have missed the solution (−1, −1, 1) of your equation in x, y, z when at the end you show the result from WA which clearly finds _four_ integer solutions.

    • @SyberMath
      @SyberMath  9 місяців тому

      😮😄 that's me!

  • @tixanthrope
    @tixanthrope 9 місяців тому

    arithmetic mean >= geometric mean yields (1, 1, 1)
    other solutions are (1, -1, -1) etc.

  • @Hobbitangle
    @Hobbitangle 9 місяців тому +3

    The equation is symmteric over x,y,z
    So if there is a solution {1,-1,-1} there should be the solutions {-1,1,-1} and {-1,-1,1}.
    You did miss one.
    And definitely the complex solutions should be considered as well.

    • @Hobbitangle
      @Hobbitangle 9 місяців тому

      Complex solutions examples:
      {-1,i,i},{1,i,-i}
      because
      i⁴=1
      -1•i•i=1
      1•i•(-i)=1

    • @SyberMath
      @SyberMath  9 місяців тому

      😄😄

  • @ayushrudra8600
    @ayushrudra8600 9 місяців тому +1

    Bro why are some people hating so hard in the comments when he accidentally missed a solution

  • @jurem2978
    @jurem2978 9 місяців тому

    Me seeing the problem, be like:
    "it's AM GM, it's AM GM"

  • @MochooCheung-pu8js
    @MochooCheung-pu8js 8 місяців тому

    Giving this kind of question is Cheating, because the question maker already knows the answer.

    • @SyberMath
      @SyberMath  8 місяців тому

      ehehehehehe 😄😜

  • @NadiehFan
    @NadiehFan 9 місяців тому

    I found two videos where you already did both problems from this video, but UA-cam won't let me post the links because if I do my message gets removed immediately. But anyway, here are the video IDs:
    ogfNGLyL7NA
    pFUVGjMUHMY

    • @SyberMath
      @SyberMath  9 місяців тому

      Thanks for the heads up! 😍
      One of them is a generalization or a version with four variables. The other one is the same problem done slightly differently, maybe! 😜
      Here's the links:
      ua-cam.com/video/ogfNGLyL7NA/v-deo.html
      ua-cam.com/video/pFUVGjMUHMY/v-deo.html