Einstein Failed To Solve This | An IMPOSSIBLE Exponential Equation

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 11

  • @rogierownage
    @rogierownage Місяць тому +1

    This is the hardest clickbait i've seen in a while. None of this is very advanced at all

  • @PotentialDevGcimOgism.
    @PotentialDevGcimOgism. Місяць тому +1

    The only problem i can find here is that the limit of 5^x - 7^(x+1) only gets to zero if we slide in the negative side. Tried it in desmos and got that x is likely equal to -5.78

  • @elsupremoclash7419
    @elsupremoclash7419 Місяць тому +1

    -5,78

  • @pedrosso0
    @pedrosso0 Місяць тому +1

    What do you mean Impossible? You jusr solved it.

    • @vladivascanu108
      @vladivascanu108 Місяць тому

      with todays tools. back them it was way more difficult

  • @aetheriox463
    @aetheriox463 Місяць тому +1

    i used a different method:
    5^x = 7^(x+1)
    ln(5^x)=ln(7^(x+1))
    xln(5)=(x+1)ln(7)
    x/(x+1)=ln(7)/ln(5)
    from here, i used the change of base formula, but backwards:
    log_e(7)/log_e(5)=log_5(7)
    So
    x/(x+1)=log_5(7)
    x=(log_5(7))(x+1)
    x=xlog_5(7)+log_5(7)
    x-xlog_5(7)=log_5(7)
    x(1-log_5(7))=log_5(7)
    x = (log_5(7))/(1-log_5(7))
    this is the same as your answer, but i find it fun that i was able to come up to a different method to find the same solution :]

    • @deliberatelyaverage
      @deliberatelyaverage Місяць тому +1

      You, unintentionally, helped me learn the change of base method for my final. Thank you internet stranger

    • @aetheriox463
      @aetheriox463 Місяць тому +1

      @@deliberatelyaverage it works with any base, not just e :]

    • @elsupremoclash7419
      @elsupremoclash7419 Місяць тому

      @@aetheriox463 even easier, if 7^(x+1) then: 7•7^x

  • @cosfor5154
    @cosfor5154 Місяць тому

    there is no solutions because graphs of y = 5^x and y = 7^(x+1) do not intersect