MATH Olympiad exponential problem|German| Learn this trick.

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 16

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +1

    27^m+27^m+27^m m=Log[27,999]=Log[27,37]+1=Log[27,1.370 recurring]+2 Input
    log(27, 999) = log(27, 1 + 0.37/0.999) + 2
    Result
    True
    Left hand side
    log(27, 999) = (3 log(3) + log(37))/log(27)
    Right hand side
    log(27, 1 + 0.37/0.999) + 2 = (3 log(3) + log(37))/log(27) It’s in my head.

  • @devonwilson5776
    @devonwilson5776 Місяць тому

    Greetings. Thanks always for sharing. I did watch to the end. However, I had already determined the value of M from the expression
    M Log 27= 999. I am happy I watched to the end. Thanks for your hug. Blessings.

  • @justekiara1953
    @justekiara1953 Місяць тому

    Correct and clear explanation. But one must review twice to master the process.

  • @Psykolord1989
    @Psykolord1989 Місяць тому

    Before watching:
    27 = 3^3, (a^m)^n = a^(mn).
    Thus you have 3^(3m) + 3^(3m) + 3^(3m) = 3(3^(3m)) = 2997.
    Now, why didn't I put that first 3 into the expression to get 3^(3m+1)? Because I want to divide by 3 so the RHS looks more familiar.
    -> 3^(3m) = 999.
    999 = 333*3 = 111*9 = 37*27 = 37(3^3).
    Thus, 3^(3m) = 37(3^3). Taking log_3 of both sides will give us
    3m = log_3(37*(3^3))
    log_a(b*c) = log_a(b) + log_a(c).
    3m = log_3(3^3) + log_3(37) = 3 + log_3(37)
    Then divide by 3...
    m = 1 + log_3(37)/3
    If you want this in the form of a log you can plug into a TI-83+ calculator, change log_3(37) into ln (37)/ln(3)
    -> 1 + ln(37)/3ln(3) = 1 + ln(37)/ln(27).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    3^3+3^3+3^3=2997 1^1+^1^1+^1^3 ( m ➖ 3m+1).

  • @عبدالواسع-س8م
    @عبدالواسع-س8م Місяць тому

    Thanks so much!

  • @francisamewode233
    @francisamewode233 Місяць тому

    Perfect. Love your teaching beautiful and sweet lady.

  • @francisamewode233
    @francisamewode233 Місяць тому

    I did my dear.

  • @wariacikminecraft321
    @wariacikminecraft321 Місяць тому

    There's no way that problem is from any Olympiad

  • @AdetunmiseAgbakosi
    @AdetunmiseAgbakosi Місяць тому

    I did