Zeta function in terms of Gamma function and Bose integral

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ •

  • @GurkiratSingh-ds8dq
    @GurkiratSingh-ds8dq 6 років тому +244

    Hey!, That's the Bose integral right? (Or something with a similar name)
    It comes up in Statistical mechanics quite some times.
    Nice!!!

    • @blackpenredpen
      @blackpenredpen  6 років тому +44

      Yes it is!!!

    • @GurkiratSingh-ds8dq
      @GurkiratSingh-ds8dq 6 років тому +40

      blackpenredpen Wait, did you just change the title of the video or did I just not notice it before?

    • @blackpenredpen
      @blackpenredpen  6 років тому +67

      Gurkirat Singh
      I just changed the title. Since you reminded me.

    • @blackpenredpen
      @blackpenredpen  6 років тому +52

      Gurkirat Singh as a thank you. I will also pin your comment now!! Thank you!

    • @GurkiratSingh-ds8dq
      @GurkiratSingh-ds8dq 6 років тому +37

      blackpenredpen I feel honoured. Thanks
      Btw since I am talking to you, One thing I never understood, why is the gamma function defined the way it is, I mean why couldn't they just define it to be the same as the factorial (for positive integers), and that -1 in the integral always seems a bit weird.
      I know that there's a PI function which fits my purposes, but Gamma is so much more in use. Why would the early mathematicians (who loved it's elegance) choose to define it as such?
      It will probably have some physics or application related reason, but nevertheless, it is worth asking

  • @duncanw9901
    @duncanw9901 6 років тому +275

    I feel like there should be a line in a horror movie where the antagonist slowly says "we are in the u world now."

  • @OonHan
    @OonHan 6 років тому +194

    t = nu then tt = nut

  • @c8adec
    @c8adec 6 років тому +73

    This is very useful in the Stefan-Bolzmann's law (black body irradiance) to get the sigma constant

    • @sinamehdizadeh1433
      @sinamehdizadeh1433 5 років тому +7

      Well, for everything related to blackbody radiation you need this.
      For example, the number density of photons is given by this integral too.

    • @integrando1847
      @integrando1847 3 роки тому +3

      incredible application

    • @atrumluminarium
      @atrumluminarium 3 роки тому +1

      Also the Sommerfeld expansion

  • @charlievane
    @charlievane 3 роки тому +1

    Thanks

  • @frank95xxx
    @frank95xxx 2 роки тому +17

    I'm a physicist and I find this kind of integral quite often. We always say "some mathematician proved this result" but I never actually checked it. Nice to see the proof, good job BPRP

    • @createyourownfuture5410
      @createyourownfuture5410 2 роки тому

      I had a question:
      Is it legal to use n first as a variable and then take the sum? It feels very sketchy.

  • @leonardromano1491
    @leonardromano1491 6 років тому +26

    This boi is a really nice one as it appears everywhere in quantum statistics in cases where the fugacity is equal to one.

  • @turtlellamacow
    @turtlellamacow 6 років тому +9

    wow! i've seen integrals like your example near the end in statistical mechanics and elsewhere and never knew how they were evaluated. the textbook just gave us the value.

  • @RyanLucroy
    @RyanLucroy 6 років тому +39

    Finally I'm able to correct you. At 4:24 you say "x to the nth power" :D
    But it's still a great video =)

  • @rylanbuck1332
    @rylanbuck1332 Рік тому +1

    This was a question on my final exam of intro to real analysis (maa 5055) and I used this technique!!! I got stuck on proving the integral at 5:20 is uniformly convergent so I was unable to continue forward after that step:( but I’m glad to know I was doing the right thing lol

  • @lorenzodigiacomo2561
    @lorenzodigiacomo2561 5 років тому +2

    I think i asked for this integral time ago, while i was studying statistical mechanics, but i only saw the video today! great!

  • @berenjervin
    @berenjervin 6 років тому +5

    Sure wish these videos were around when I did my degree!
    These are great!

  • @ramez2775
    @ramez2775 6 років тому +1

    390 likes and 0 dislikes... that’s the most likes I’ve ever seen on a video with 0 dislikes. Keep up the good work! (:

  • @mathiasfeijtel2449
    @mathiasfeijtel2449 4 роки тому +2

    This is equivalent to showing that the Mellin transform of the function 1/(e^x -1) is the product of the Gamma function with the Riemann zeta function

  • @dezkelz
    @dezkelz 6 років тому

    Man, this is very cool. As a recent ME grad, I've been out of the calc3 maths world for a little while, but this makes me want to jump right back into it.

    • @Jeff-wc5ho
      @Jeff-wc5ho 6 років тому

      Dean Congrats! :) also, out of curiosity, how much math were you required to take as an ME major?

    • @dezkelz
      @dezkelz 6 років тому

      Thanks Jeff. After doing my calc series, I also had to take a linear algebra and an ODE differential equations course.

  • @cakes43
    @cakes43 6 років тому +3

    I recall seeing this result in my statistical physics course when we dealt with bose-einstein distribution. I never saw how this mathematical derivation, though. :) Awesome vid!!!

  • @_DD_15
    @_DD_15 6 років тому

    Your best video so far. Truly interesting!

  • @kilogods
    @kilogods 6 років тому +7

    This is like the first or second page of Riemann’s paper on primes.

  • @davidgillies620
    @davidgillies620 5 років тому +2

    You might also see this expressed as the product of the gamma function and the polylogarithm function Li_s(1) (which is zeta(s)). Polylogs crop up in related things like integral of x over exp(x) - 1

  • @AngeloYeo
    @AngeloYeo 6 років тому +3

    oh... 我只在乎你 nice choice for an ending song ! :) Thanks for the uploading !

  • @andrewandrus3296
    @andrewandrus3296 4 роки тому +2

    that outro music had a Scott Joplin vibe, v-much appreesh

  • @kevincaotong
    @kevincaotong 6 років тому +3

    I'm not sure if this is true, but I think I've heard from somewhere that Fubini's Theorem (or Tonelli's) only works when the function is continuous in the given interval. But then, I don't think we could integrate something that's not continuous in a given interval (unless we break it up into continuous intervals).
    But very interesting video! 😯 I bet the next video is "Proof of Riemann's Hypothesis".

  • @Risu0chan
    @Risu0chan 6 років тому

    and if you replace the zeta function by the alternate eta function, you change the sign in the denominator in the integral, from e^u - 1 to e^u + 1.

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 6 років тому +11

    I think for a counterexample where the exchange of sum and int doesn't work you have to come up with some really stupid functions like f_n= a_n*x from 0 to 1/n with a_n so that f_n(1/n)=1 or something like that

    • @marcioamaral7511
      @marcioamaral7511 6 років тому +5

      AndDiracisHisProphet Excuse me man
      I can see you've got a great understanding of maths and physics
      Never thought of making some vids? (I would love to see them)

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому +9

      How do you know I have understanding of math and physics?
      Also, I would probably make them in german^^
      Also, I am ugly af. You wouldn't want to see me :D

    • @marcioamaral7511
      @marcioamaral7511 6 років тому +4

      AndDiracisHisProphet Well I've read your previous comments in many other math channels and they don't seem to be written by someone who doesn't understand
      No problem if you do them in German
      Don't say that you're ugly
      I personally don't care about that

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому +5

      When you found my comments on other math channels you probably have already noticed that I make a lot of jokes. Not necessarily funny ones. The "ugly" comment was such a joke.
      Anyway, I indeed have planned doing math videos, but not using this user name (this is quite a private one), because I am an actual self employed tutor and I will use my companies name.
      Thing is I will mainly do stuff for grades 6 to 12, or so. Probably not so interesting for someone watching this kind of videos.

    • @marcioamaral7511
      @marcioamaral7511 6 років тому +5

      AndDiracisHisProphet But if one day you decide to do some calc, ODE, Linear álgebra. Abstract algebra vids
      You've got a subscriber!

  • @kylebrescher3189
    @kylebrescher3189 6 років тому

    I was getting ready to yell at you for casually swapping sums for integrals, but you passingly referred to absolute convergence. This is one of those I'll take your word for it :-)

    • @kylebrescher3189
      @kylebrescher3189 6 років тому +1

      After doing some homework of my own on this, it seems like a much safer assumption than I would have thought that you can make that kind of interchange. According to single-variable special cases of the Fubini/Tonelli theorems, if int(sum(|f(n))|) < inf, or sum(int(|f(n)|)), then the two are interchangeable for the entire function, sans absolute values.
      Tonelli's hinges on Fn(x) >= 0, and I start to lose the trail after that, but I think you're really quite safe. So if you found a function who had negative values and a sum which is conditionally convergent and married the two... maybe??
      Also, good job.
      Also also, can we get a LaTeX editor built into UA-cam Comments?

  • @AritraBose-y1l
    @AritraBose-y1l 2 роки тому +1

    proud to be a bose

  • @UnathiGX
    @UnathiGX 6 років тому

    Wow...these things fascinate me...I don't know much about them...but the time will come I promise!

  • @theonepath7865
    @theonepath7865 6 років тому +3

    You should record in 1080p 60fps. Quality res videos for quality maths 👌🏼

    • @AviMehra
      @AviMehra 6 років тому

      TheOnePath he records on mac

    • @gian2kk
      @gian2kk 6 років тому

      60fps sucks

  • @SudarshanBaurai
    @SudarshanBaurai 3 роки тому

    You are simply awesome Prof. 🙏

  • @kokainum
    @kokainum 6 років тому

    You can change the order because functions are non-negative. It doesn't need to converge. If you get infinity in one case, you get it also in the other.

  • @eduardkugler896
    @eduardkugler896 3 роки тому

    If you read Planck Vorlesungen you find 1+1/2^4+1/3^4...=Zeta(4) for Stefan Boltzmann Integral. You can Take any Zeta of even Numbers of zeta, If you adapt the prefactor.

  • @non-inertialobserver946
    @non-inertialobserver946 6 років тому +1

    Hi! I love your videos, and your math is on point Keep it up 😉

  • @ranjanadas3347
    @ranjanadas3347 6 років тому

    Hi, I'm from Bangladesh. I very much like your videos. Thanks for making video on Bose integral.

  • @maxwelleinstein211
    @maxwelleinstein211 6 років тому

    U just solved the Riemann hypothesis

  • @sergioh5515
    @sergioh5515 6 років тому

    Amazing and beautiful result! I always snapshot these kinds of things bc that are so interesting! Thanks for sharing as always!!!!!!!!!! 😇😇😇😇😇

  • @OonHan
    @OonHan 6 років тому +1

    1 fact-oreo!
    Bringing back the fun

  • @TimesOfSilence
    @TimesOfSilence 6 років тому +2

    This. Is. Awesome.

  • @Galileosays
    @Galileosays 4 роки тому

    Wow, an amazing proof. The ancient Greeks would be surprised to see Gamma, Zeta, Pi in one equation.

  • @stydras3380
    @stydras3380 6 років тому +1

    Awesome video! You can't swap integration and addition with this thing: ∫ ∑ x²(1-x²)ⁿ dx for x∈[-1; 1] when you sum over n c:

  • @parnabghosh7877
    @parnabghosh7877 6 років тому +2

    That was a great one. How can we solve zeta(3)

  • @d.h.y
    @d.h.y Рік тому

    10:35 Bravo!!!

  • @yousseffaryssy7760
    @yousseffaryssy7760 4 роки тому

    thank very much you are a genius

  • @cupanodensetsu2420
    @cupanodensetsu2420 6 років тому

    What a great video 😍😍😍
    Just like usual 😊

  • @TheMauror22
    @TheMauror22 6 років тому +2

    WOW!! This is so cool!

  • @davidblauyoutube
    @davidblauyoutube 2 роки тому

    Now, evaluate the integral using the residue theorem, thereby deriving the reflection formula for zeta!

  • @shandyverdyo7688
    @shandyverdyo7688 5 років тому

    We need more videos about this,,, BPRP!!!!!!!!!!!!!
    :V

  • @dank9427
    @dank9427 6 років тому +1

    Small speaking mistake at 4:24, but still an awesome and creative video!

  • @GeekTommy
    @GeekTommy 6 років тому

    Great work, really interesting as always!

  • @apta9931
    @apta9931 6 років тому +1

    I wonder what would happen if you did this with the eta function you just made a video on

  • @theverymodelofamodernmajor6200
    @theverymodelofamodernmajor6200 2 роки тому

    4:17 I’m confused, if T(x) is defined in terms of n how can you pull it out of the summation?

  • @whatitmeans
    @whatitmeans 2 роки тому

    In complex numbers, if "s" is complex, e^(ns) != (e^s)^n... be aware of it because complex exponentiation is not a univocate value operation... so surely the relation is true for real "s", but for complex "s" you could find issues related to the multyvalued results of complex exponentiation

  • @BruceWayne-mk9km
    @BruceWayne-mk9km Рік тому

    This is awesome!!❤

  • @yousefalyousef59
    @yousefalyousef59 5 років тому

    Let the equation below accept a single solution(n) specify both(a,b) in terms of (n)
    f(x)=X^2-(a+b+1)X+(ab)=0
    since f(x)=0 is equivalent to
    x= (x-a)(x-b)
    I think in this space there are zeros of the zeta function .

  • @iprogramplus
    @iprogramplus 6 років тому

    you are very cool and very educational

  • @marcioamaral7511
    @marcioamaral7511 6 років тому

    Each and every day you look like Dr Peyam
    High level maths!

  • @muradali9324
    @muradali9324 3 роки тому

    😘😘ابداع يا استاد .احسنت 👏

  • @איתןגרינזייד
    @איתןגרינזייד 4 роки тому

    Blackpenredpen, I am pretty sure that you can always switch the order of summation and integration

  • @abdurrahimuzum5924
    @abdurrahimuzum5924 6 років тому +7

    this video very good. I want that you share such a this video. I'm wacthing from Turkey.

  • @Archik4
    @Archik4 6 років тому

    zeta(3) = 1/2 integrate 0 to infinity u^2/(e^u-1) by u

  • @eta3323
    @eta3323 6 років тому +4

    I do not really understand when and why you are allowed to change summation and integration. Can anyone explain is to me?

    • @Koisheep
      @Koisheep 6 років тому

      ζeta if the integral is absolutely convergent (the integral of the absolute value is finite)

    • @eta3323
      @eta3323 6 років тому

      Thank you, but I was rather talking about why you're not allowed to change if the sum is divergent

    • @sergioh5515
      @sergioh5515 6 років тому +1

      ζeta if a function can be expressed as an infinite series and if it has a radius convergence, and if f(x) is differentiable and can be integrated.... then you are allowed to perform calculus on the series which means treating terms like constants and variables of integration. Meaning you can interchange the summation and integration. However you will have to find a proof of this theorem :)

    • @joelrzgn
      @joelrzgn 6 років тому

      Because the integral and sum operators are linear and are operating on distinct variables.

    • @joelrzgn
      @joelrzgn 6 років тому

      ζeta www.maths.manchester.ac.uk/~mdc/old/341/not7.pdf

  • @ryanchatterjee
    @ryanchatterjee 6 років тому

    Are you going off HM Edwards' "Riemann's Zeta Function"? I'm reading it now and this is in one of the first few chapters.

  • @phyarth8082
    @phyarth8082 5 років тому +1

    Bose condensate. is winter coming ? :)

  • @akashsardar495
    @akashsardar495 5 років тому

    Wow Bose Integral🤩

  • @sebastiangrander9002
    @sebastiangrander9002 6 років тому

    This is fucking amazing

  • @sab1862
    @sab1862 6 років тому +8

    Bernhard Riemann!

  • @mosab643
    @mosab643 6 років тому

    4:11 How were you able to take the gamma function out since it contains n terms?

    • @rot6015
      @rot6015 5 років тому

      It doesn't contain any n.

  • @srikanthtupurani6316
    @srikanthtupurani6316 5 років тому +2

    Math is divine. Bose is a great scientist from India. In physics some elementary particles are called bosons.

  • @medgazzeh9884
    @medgazzeh9884 4 роки тому

    To permutate the infinite sum and the proper integral, shouldn't the sum converge uniformely and not only absolutely??

  • @factsheet4930
    @factsheet4930 6 років тому +2

    2:06 apparently you sound exactly like me according to my phone. You saying "and take a look" in the video triggered my "Ok Google" command and searched for "look". :l

  • @wontpower
    @wontpower 6 років тому

    I forgot, where do you teach again?

  • @tutordave
    @tutordave Рік тому

    Does this formula work on the critical strip? Trying to graph |zeta(s)| as a function of x + iy (3D plot) did not seem to work. Maybe it's the program I'm using. Also, when I put in the first non-trivial zero of the zeta function, this formula you have does not return zero, so I think maybe it does not work on the critical strip... sadly. The function Riemann gives defines the zeta function in terms of the zeta function of 1-s. And when a function is defined using itself (sort of)... that's where the issues arise. My opinion. I wish there were a better form of the zeta function that did not do that.

  • @conrad5342
    @conrad5342 Рік тому

    As Gamma of negative integer values produces poles, I am wondering how one can define zeta there.

    • @vascomanteigas9433
      @vascomanteigas9433 9 місяців тому

      Use the integral to plot a keyhole contour over the complex plane, then use the Cauchy Residue Theorem and the Zeta Functional Equation are derived. The Analytical Continuation of Zeta are derived.

  • @palakagarwal9819
    @palakagarwal9819 5 років тому

    Just amazing...

  • @suchetandontha3340
    @suchetandontha3340 6 років тому

    Hey nice video! But I just have one question; when saying a geometric series has the sum of a/(1-r), doesn't the sum need to start at 0 and not 1 like it did in the video?

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      Suchetan Dontha it depends. That's why I put down "first"/(1-r)

  • @mohammedhubail1607
    @mohammedhubail1607 6 років тому

    4:25 x to the nth power

  • @cameronspalding9792
    @cameronspalding9792 4 роки тому

    Can we not do something similar with the eta function

  • @retired5548
    @retired5548 6 років тому

    roses are red
    violets are blue
    now i can do maths
    that my teachers can't do

  • @MustafaTAli
    @MustafaTAli 6 років тому

    Please solve integration root Sin(x) dx by udv ?

  • @casa1420
    @casa1420 5 років тому

    Very good!

  • @davidwiedemann9926
    @davidwiedemann9926 6 років тому

    At 7:57 didnt he forget the nth power or did i not understand something

    • @johnchu7159
      @johnchu7159 6 років тому

      David Wiedemann It is the sum to infinity as the summation size is added.So the nth power didn't miss

    • @matchamochi603
      @matchamochi603 6 років тому

      he took the infinite geometric sum with r = 1/e^u

  • @oni8337
    @oni8337 4 роки тому

    Now derive the same equation starting from Zeta and starting from Bose

  • @Saturos02
    @Saturos02 6 років тому

    Very nice!

  • @knew_789
    @knew_789 Рік тому

    Forgetting Zeta function is the worst thing that can happen in your life

  • @jenswaelkens9817
    @jenswaelkens9817 6 років тому

    Could we use this connection as a definition of the zeta function ?

    • @davidrheault7896
      @davidrheault7896 6 років тому

      Jens Waelkens no we can't define zeta by this integral because of the poles of the gamma function

    • @davidrheault7896
      @davidrheault7896 6 років тому

      Also this integral converges only for Re (s) >1

    • @jenswaelkens9817
      @jenswaelkens9817 6 років тому

      Thanks for clarifying that!

    • @mike4ty4
      @mike4ty4 6 років тому

      Sadly, it's not really any better than using the series formula, though I admit it's a heck of a lot more aesthetic. In particular, you do have
      zeta(s) = 1/Gamma(s) int_{0...inf} u^(s-1)/(e^u - 1) du
      and since there's no zeta on the right, it is not circular, but the trouble is, it's no better than the series in terms of its range. The right hand integral, unfortunately, diverges for the good bit. Too bad, because as said, this is way cooler.

  • @ola6139
    @ola6139 4 роки тому

    Is there any application of the beta and gamma functions in physics?

  • @Patapom3
    @Patapom3 6 років тому

    Love it!

  • @holyshit922
    @holyshit922 3 роки тому

    Steve did you forget umlaut on the name of this integral ?

  • @strangerannie
    @strangerannie 3 роки тому +1

    Just thinking how he hold 2 pens together and switch them while writing.....

  • @debdhritiroy6868
    @debdhritiroy6868 6 років тому

    Hold on, x is always a variable, I think it should primarily be converted into something with u.. unless u r doin partial integration, which doean't seem to be the case, is it?

  • @maximilianmueller4707
    @maximilianmueller4707 5 років тому

    Does anybody know the feeling of Depression i have it at the Ende of the Video it is so good why it has to be so good thanks for showing

  • @andresxj1
    @andresxj1 6 років тому +2

    Just to be sure, since *u* has to be greater than 0, should the integral be from *a* to *infinity* and then take the limit of *a -> 0* ?

    • @AviMehra
      @AviMehra 6 років тому +2

      Andy Arteaga yes but because it is continuous, the value equals the limit, given that the value (inside) exists. It does exist (of course, it was calculated) so the value is the same

  • @stamatiossargantanis7909
    @stamatiossargantanis7909 6 років тому

    Isn't the formula for an infinite geometric sum 1/1-r instead of first term / 1 - r?

    • @hedgechasing
      @hedgechasing 6 років тому

      stamsarger only if the first term is one. It always is, however, if you evaluate the sum of (anything)^n from n=0 to infinity. In this case the sum started at n=1 so the more general formula was needed.

  • @arekkrolak6320
    @arekkrolak6320 2 роки тому

    I wonder if zeta is defined on the complex plane and your integral is defined on the real line can this be somehow accorded...

  • @agsnewton999
    @agsnewton999 6 років тому +1

    We know that zeta(2) = π^2/6, but can you show us how to calculate zeta(3) or zeta(4) maybe? I always wonder how to find the value of it..

    • @agsnewton999
      @agsnewton999 6 років тому

      Also when s > 2

    • @davidrheault7896
      @davidrheault7896 6 років тому

      Zeta(4) is equal to pi^4/90 ( The great Euler found them all)

    • @agsnewton999
      @agsnewton999 6 років тому

      David Rheault i already know the value. But i want to know how to find the pi^4/90 hahah

    • @davidrheault7896
      @davidrheault7896 6 років тому +1

      Fourier and parseval identity on f(x) = x^2, big formula, and you get zeta(4) as a function of zeta(2)

    • @akirakato1293
      @akirakato1293 6 років тому

      didnt he basically prove all the even values of zeta

  • @DiegoJove
    @DiegoJove 6 років тому

    t=n*u then -t= -1(n*u) or = -t=-n*-u

  • @The13mahfuz
    @The13mahfuz 5 років тому

    Plz, define the limit of x.

  • @Tomaplen
    @Tomaplen 6 років тому

    what if you have gamma(x)*zeta(y)
    or even maybe gamma(x)*zeta(2x) or something like that.
    Can you do anything?

  • @EyadAmmari
    @EyadAmmari 2 роки тому

    Amazing

  • @ゴテンクス-q8q
    @ゴテンクス-q8q 6 років тому +3

    What math topic is this from?

  • @sciencestararvinsinghk
    @sciencestararvinsinghk 6 років тому

    I realized you were holding 2 markers 10 minutes into the video