Curb your L'hopital's Rule

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • In this video , I showed how to evaluate the limit of a rational exponential function. In this video, I highlighted the need to develop good algebra skills before attempting Lhopital's rule

КОМЕНТАРІ • 70

  • @michellaboureur7651
    @michellaboureur7651 11 місяців тому +35

    I wish I’d had such a maths teacher, you’re so considerate and benevolent. Having pupils feel loved and cared for is the first essential element in pedagogy. Not for the sake of kindness alone but because of what that means about teacher’s ability to understand the needs of pupils. The other element of course is competence in the subject matter. You are endowed with both.

    • @ciprianteasca7823
      @ciprianteasca7823 11 місяців тому

      All your comments raised to the power of...infinity!

    • @dan-florinchereches4892
      @dan-florinchereches4892 4 місяці тому

      I am wondering why he did the change of variable. My first thought was to factor out forcefully 9^x out of denominator and nominator and have (8/9)^x and (7/9)^x go to 0 as X grows large.
      Then I noticed the limit is towards -inf so just factor out 7^x and have to quantities >1 go to zero as exponent grows smaller.
      I like his voice and would like to understand his method of teaching because as I am now if I wanted to be a teacher I guess I would epically fail to make students understand my love of maths...

  • @Zerotoinfinityroad
    @Zerotoinfinityroad 11 місяців тому +8

    One of the bestest teachers I've Ever seen😇

  • @Moj94
    @Moj94 11 місяців тому +16

    I can confirm that I was throwing that at every limit I could find. :)) My L'Hopital brain would rather skip the question some years ago.

  • @arshiamirzaei1212
    @arshiamirzaei1212 18 днів тому +2

    Thank you for this amazing limit ❤ , 🧡🇪🇸⚽️🗽🇺🇲💙

  • @DatBoi_TheGudBIAS
    @DatBoi_TheGudBIAS 11 місяців тому +7

    as a person who learned to do limits like these by head quite fast with the "the greatest matters more" rule, i immediatly saw -1 as the answer

  • @didar8809
    @didar8809 11 місяців тому +9

    Just the best teacher

  • @BartBuzz
    @BartBuzz 11 місяців тому +3

    Excellent! Sometimes we forget about the basics!

  • @jensberling2341
    @jensberling2341 11 місяців тому +3

    Thank you. How I love your presentation

  • @hqs9585
    @hqs9585 11 місяців тому +3

    4:46. Did you make a mistake with the signs in the denominator?

  • @gastonsolaril.237
    @gastonsolaril.237 11 місяців тому +1

    Amazing video, as always!!
    Just a last-minute idea: I believe that another interesting (though messy) way to solve these, is through Taylor series... in theory, "a^x = e^(x ln a)". Perhaps, in the end, you have 3 power series above and below, and you could join them. All of them have the same max-degree term approaching infinity at the same pace, so you may end up with a typical infinity/infinity case which when approached symbolically, may end up with the same right result!

  • @emmanuelbossfx
    @emmanuelbossfx 8 місяців тому +1

    I saw that mistake From the beginning but thank God 🙏 you discovered it

  • @punditgi
    @punditgi 11 місяців тому +10

    Prime Newtons does it all! 🎉😊

  • @KundrahOmusamaHerbert
    @KundrahOmusamaHerbert 11 місяців тому +1

    What a such interesting content this is!

  • @Theterrorlogs-0
    @Theterrorlogs-0 11 місяців тому

    Its funny how you at first did easy questions and now hard ones

  • @zakariakhalifa9681
    @zakariakhalifa9681 11 місяців тому +2

    Just awesome

  • @אסףרביבו-ר7ת
    @אסףרביבו-ר7ת 9 місяців тому

    But you didnt solve for x but for t still you a great teacher and a person i love you man❤

    • @TheFrewah
      @TheFrewah 8 місяців тому

      He did because the end result doesn’t depend on x

  • @rajesh29rangan
    @rajesh29rangan 9 місяців тому

    Elegant solution.

  • @therichcircle.8819
    @therichcircle.8819 11 місяців тому

    Best tutor, you are so lovely

  • @SuperTommox
    @SuperTommox 11 місяців тому +5

    Gotta give love to the algebra before you give it to calculus!

  • @Archimedes_Notes
    @Archimedes_Notes 11 місяців тому

    Assume now that we are facing the same original problem but we are taking the limit toward positive infinity; what would be the limit?

  • @ChadTanker
    @ChadTanker 11 місяців тому +1

    But it's symmetrical...
    so you could just go ahead and rewrite the fraction so the top and bottom lines up.
    lim x-> -inf. ( (9^x - 8^x + 7^x) / (9^x + 8^x - 7^x) )
    And then you cancel like terms by simply dividing leaving:
    lim x->inf. ( 1 - 1 - 1)
    which is just 1 - 2 = -1
    way easier and quicker without much thaught.

    • @chaosredefined3834
      @chaosredefined3834 9 місяців тому +1

      You can't cancel terms like that. Suppose we have (a - b + c)/(a + b - c), by what you just did, we get 1 - 1 - 1 = -1. But if I put in a = 2, b = 6, c = 10, we get 6/-4 = -1.5, but by your logic, we have -1.

  • @surendrakverma555
    @surendrakverma555 11 місяців тому

    Very good. Thanks 🙏

  • @luxxulyanite
    @luxxulyanite 11 місяців тому

    This video should have been called "Curb your L'Hospital's rule"

    • @PrimeNewtons
      @PrimeNewtons  11 місяців тому +1

      I agree

    • @luxxulyanite
      @luxxulyanite 11 місяців тому

      @@PrimeNewtons Solved by Larry David 😇

  • @kennethgee2004
    @kennethgee2004 11 місяців тому

    You could have done all the simplifying first and then did the change of variable it necessary. I also saw that everything was in terms of a^x, such that taking the ln of the terms to pull out x to the front would have been an easier way to approach this.

  • @vishalmishra3046
    @vishalmishra3046 4 місяці тому

    7 < 8 < 9 so their negative powers are opposite, 1/7 > 1/8 > 1/9. So, turn this into a positive infinity limit problem by dividing by the largest term 7^x or (1/7)^(-x) same thing.
    Numerator tends to 7^x (nearly zero) and denominator tends to -7^x (nearly negative zero) but they are both equal in magnitude and opposite in sign. So *result = -1*

  • @rashidissa5887
    @rashidissa5887 25 днів тому

    Still in problem with the"limit" issue but hopefully, by following your classes, I will one day catch up

  • @nharvey64856
    @nharvey64856 11 місяців тому

    Well done

  • @KRO_VLOGS
    @KRO_VLOGS 11 місяців тому +1

    Sir can you make a video of differentiating general x^n using first principal

    • @Orillians
      @Orillians 11 місяців тому +1

      he did!

    • @KRO_VLOGS
      @KRO_VLOGS 11 місяців тому

      @@Orillians can't find it

    • @Orillians
      @Orillians 11 місяців тому

      wait your riht. Sorry. My mistake.@@KRO_VLOGS

  • @luisangel25
    @luisangel25 11 місяців тому

    "those stop learning, stop living"

  • @DonutOfNinja
    @DonutOfNinja 11 місяців тому

    You can also use l'hopital 7 times, ie taking the 7th derivative of both sides and getting a limit that can be simplified to 7!/(-7!)

  • @naorbedinheinrichm.5167
    @naorbedinheinrichm.5167 11 місяців тому +1

    lezgo prime newton

    • @jamal369
      @jamal369 11 місяців тому

      40 sec ago

  • @m.h.6470
    @m.h.6470 11 місяців тому +1

    Good that you found the +/- error... that would have messed up the result. 😉

  • @jumpman8282
    @jumpman8282 11 місяців тому +2

    Sneaky!
    I exhausted pretty much every algebraic trick in the book, and even tried L'Hôpital's rule as a second-to-last resort,
    before realizing that all I had to do was think about dominant terms.
    Even then, I thought 9^𝑥 was the dominant term, so I divided everything by 9^𝑥.
    But about halfway through, I realized that since 𝑥 is approaching _negative_ infinity it's actually 7^𝑥 that is the dominant term.
    And sure enough, dividing everything by 7^𝑥, the problem basically solved itself.
    Oof.

  • @klementhajrullaj1222
    @klementhajrullaj1222 11 місяців тому +2

    Division up and down with 7^x

  • @alejandropulidorodriguez9723
    @alejandropulidorodriguez9723 11 місяців тому

    splendid

  • @cribless810
    @cribless810 11 місяців тому +1

    TitIe got me cIicking immediateIy🤣🤣

  • @JourneyThroughMath
    @JourneyThroughMath 11 місяців тому

    Im proud of myself😊. I saw Lhopitals rule wouldnt work. So i tried the ration function approach. My only mistake was I multiplied by 1/9^x (I didnt transition to t) instead of 1/7^x. But thats an easy mistake to fix

  • @sadeqirfan5582
    @sadeqirfan5582 10 місяців тому

    You could just factorise: numerator = - denominator. Cancels out and is -1.

  • @TSR1942
    @TSR1942 11 місяців тому

    Damn smart guy.

  • @SilasKiprotich-d4r
    @SilasKiprotich-d4r 4 місяці тому

    Clear

  • @varun3282
    @varun3282 11 місяців тому

    I tried expansions it didn't work out

  • @brunoporcu3207
    @brunoporcu3207 11 місяців тому

    Bravissimo professor!!!!

  • @comrade_marshal
    @comrade_marshal 11 місяців тому +2

    Me who forgets about L'Hopital everytime, this time: 🦍🦍🦍
    Another reason that L'Hopital won't work according to me is that n^x's derivative returns n^x*ln(n) so, the derivative function is technically nearly similar

    • @jumpman8282
      @jumpman8282 11 місяців тому

      LOL, I tend to forget STEP ONE, which is to apply direct substitution.
      I've lost count of the times I found myself lost in a jungle of algebra, just to realize that all I needed to do was "plug it in".
      They say we learn from our mistakes. Well, I guess this is my personal exception to that rule :)

  • @godussop9882
    @godussop9882 11 місяців тому

    NICEEEE

  • @Harbingersknight21
    @Harbingersknight21 11 місяців тому

    Man i applied L hospital rule and got stuck 😅

  • @Jon60987
    @Jon60987 9 місяців тому

    GREAT PROBLEM :) :) :)

  • @mikefochtman7164
    @mikefochtman7164 11 місяців тому

    Well.... I was replacing terms with e. Something like e^(xln(7))+e^(xln(8))-e(xln(9)) and getting no where. That wasn't pretty. lol

  • @gedmundos1
    @gedmundos1 10 місяців тому

    The limit is wrong. Let us observe the denominator -7^(-t). He transformed it to +(1/7^(t)).

    • @PrimeNewtons
      @PrimeNewtons  10 місяців тому

      You think it's wrong or you know it's wrong?

    • @m4n_plasma273
      @m4n_plasma273 9 місяців тому

      In the end he corrected it, even if it wasn’t corrected so what? We did learn the thinking process which is the main goal, isn’t it?

  • @jamal369
    @jamal369 11 місяців тому +1

    Hi again

  • @tomasbeltran04050
    @tomasbeltran04050 11 місяців тому

    Niceeeee

  • @Yu28_
    @Yu28_ 11 місяців тому +1

    Answer = 1 is it (Spammer)

  • @anonakkor9503
    @anonakkor9503 11 місяців тому

    niceeee hahahaa