Curb your L'hopital's Rule

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 68

  • @michellaboureur7651
    @michellaboureur7651 8 місяців тому +35

    I wish I’d had such a maths teacher, you’re so considerate and benevolent. Having pupils feel loved and cared for is the first essential element in pedagogy. Not for the sake of kindness alone but because of what that means about teacher’s ability to understand the needs of pupils. The other element of course is competence in the subject matter. You are endowed with both.

    • @ciprianteasca7823
      @ciprianteasca7823 8 місяців тому

      All your comments raised to the power of...infinity!

    • @dan-florinchereches4892
      @dan-florinchereches4892 Місяць тому

      I am wondering why he did the change of variable. My first thought was to factor out forcefully 9^x out of denominator and nominator and have (8/9)^x and (7/9)^x go to 0 as X grows large.
      Then I noticed the limit is towards -inf so just factor out 7^x and have to quantities >1 go to zero as exponent grows smaller.
      I like his voice and would like to understand his method of teaching because as I am now if I wanted to be a teacher I guess I would epically fail to make students understand my love of maths...

  • @Zerotoinfinityroad
    @Zerotoinfinityroad 8 місяців тому +8

    One of the bestest teachers I've Ever seen😇

  • @Moj94
    @Moj94 8 місяців тому +14

    I can confirm that I was throwing that at every limit I could find. :)) My L'Hopital brain would rather skip the question some years ago.

  • @DatBoi_TheGudBIAS
    @DatBoi_TheGudBIAS 8 місяців тому +6

    as a person who learned to do limits like these by head quite fast with the "the greatest matters more" rule, i immediatly saw -1 as the answer

  • @didar8809
    @didar8809 8 місяців тому +9

    Just the best teacher

  • @BartBuzz
    @BartBuzz 8 місяців тому +3

    Excellent! Sometimes we forget about the basics!

  • @jensberling2341
    @jensberling2341 8 місяців тому +3

    Thank you. How I love your presentation

  • @emmanuelbossfx
    @emmanuelbossfx 5 місяців тому +1

    I saw that mistake From the beginning but thank God 🙏 you discovered it

  • @punditgi
    @punditgi 8 місяців тому +10

    Prime Newtons does it all! 🎉😊

  • @gastonsolaril.237
    @gastonsolaril.237 8 місяців тому +1

    Amazing video, as always!!
    Just a last-minute idea: I believe that another interesting (though messy) way to solve these, is through Taylor series... in theory, "a^x = e^(x ln a)". Perhaps, in the end, you have 3 power series above and below, and you could join them. All of them have the same max-degree term approaching infinity at the same pace, so you may end up with a typical infinity/infinity case which when approached symbolically, may end up with the same right result!

  • @rajesh29rangan
    @rajesh29rangan 6 місяців тому

    Elegant solution.

  • @zakariakhalifa9681
    @zakariakhalifa9681 8 місяців тому +2

    Just awesome

  • @KundrahOmusamaHerbert
    @KundrahOmusamaHerbert 8 місяців тому +1

    What a such interesting content this is!

  • @vishalmishra3046
    @vishalmishra3046 25 днів тому

    7 < 8 < 9 so their negative powers are opposite, 1/7 > 1/8 > 1/9. So, turn this into a positive infinity limit problem by dividing by the largest term 7^x or (1/7)^(-x) same thing.
    Numerator tends to 7^x (nearly zero) and denominator tends to -7^x (nearly negative zero) but they are both equal in magnitude and opposite in sign. So *result = -1*

  • @therichcircle.8819
    @therichcircle.8819 8 місяців тому

    Best tutor, you are so lovely

  • @SuperTommox
    @SuperTommox 8 місяців тому +5

    Gotta give love to the algebra before you give it to calculus!

  • @ChadTanker
    @ChadTanker 8 місяців тому +1

    But it's symmetrical...
    so you could just go ahead and rewrite the fraction so the top and bottom lines up.
    lim x-> -inf. ( (9^x - 8^x + 7^x) / (9^x + 8^x - 7^x) )
    And then you cancel like terms by simply dividing leaving:
    lim x->inf. ( 1 - 1 - 1)
    which is just 1 - 2 = -1
    way easier and quicker without much thaught.

    • @chaosredefined3834
      @chaosredefined3834 6 місяців тому +1

      You can't cancel terms like that. Suppose we have (a - b + c)/(a + b - c), by what you just did, we get 1 - 1 - 1 = -1. But if I put in a = 2, b = 6, c = 10, we get 6/-4 = -1.5, but by your logic, we have -1.

  • @surendrakverma555
    @surendrakverma555 8 місяців тому

    Very good. Thanks 🙏

  • @kennethgee2004
    @kennethgee2004 8 місяців тому

    You could have done all the simplifying first and then did the change of variable it necessary. I also saw that everything was in terms of a^x, such that taking the ln of the terms to pull out x to the front would have been an easier way to approach this.

  • @אסףרביבו-ר7ת
    @אסףרביבו-ר7ת 6 місяців тому

    But you didnt solve for x but for t still you a great teacher and a person i love you man❤

    • @TheFrewah
      @TheFrewah 4 місяці тому

      He did because the end result doesn’t depend on x

  • @sadeqirfan5582
    @sadeqirfan5582 7 місяців тому

    You could just factorise: numerator = - denominator. Cancels out and is -1.

  • @hqs9585
    @hqs9585 8 місяців тому +2

    4:46. Did you make a mistake with the signs in the denominator?

  • @klementhajrullaj1222
    @klementhajrullaj1222 8 місяців тому +2

    Division up and down with 7^x

  • @JourneyThroughMath
    @JourneyThroughMath 8 місяців тому

    Im proud of myself😊. I saw Lhopitals rule wouldnt work. So i tried the ration function approach. My only mistake was I multiplied by 1/9^x (I didnt transition to t) instead of 1/7^x. But thats an easy mistake to fix

  • @DonutOfNinja
    @DonutOfNinja 8 місяців тому

    You can also use l'hopital 7 times, ie taking the 7th derivative of both sides and getting a limit that can be simplified to 7!/(-7!)

  • @nharvey64856
    @nharvey64856 8 місяців тому

    Well done

  • @m.h.6470
    @m.h.6470 8 місяців тому +1

    Good that you found the +/- error... that would have messed up the result. 😉

  • @jumpman8282
    @jumpman8282 8 місяців тому +2

    Sneaky!
    I exhausted pretty much every algebraic trick in the book, and even tried L'Hôpital's rule as a second-to-last resort,
    before realizing that all I had to do was think about dominant terms.
    Even then, I thought 9^𝑥 was the dominant term, so I divided everything by 9^𝑥.
    But about halfway through, I realized that since 𝑥 is approaching _negative_ infinity it's actually 7^𝑥 that is the dominant term.
    And sure enough, dividing everything by 7^𝑥, the problem basically solved itself.
    Oof.

  • @alejandropulidorodriguez9723
    @alejandropulidorodriguez9723 8 місяців тому

    splendid

  • @TSR1942
    @TSR1942 8 місяців тому

    Damn smart guy.

  • @brunoporcu3207
    @brunoporcu3207 8 місяців тому

    Bravissimo professor!!!!

  • @smn--8-i3x
    @smn--8-i3x 8 місяців тому

    Its funny how you at first did easy questions and now hard ones

  • @SilasKiprotich-d4r
    @SilasKiprotich-d4r 27 днів тому

    Clear

  • @KRO_VLOGS
    @KRO_VLOGS 8 місяців тому +1

    Sir can you make a video of differentiating general x^n using first principal

    • @Orillians
      @Orillians 8 місяців тому +1

      he did!

    • @KRO_VLOGS
      @KRO_VLOGS 8 місяців тому

      @@Orillians can't find it

    • @Orillians
      @Orillians 8 місяців тому

      wait your riht. Sorry. My mistake.@@KRO_VLOGS

  • @Archimedes_Notes
    @Archimedes_Notes 8 місяців тому

    Assume now that we are facing the same original problem but we are taking the limit toward positive infinity; what would be the limit?

  • @naorbedinheinrichm.5167
    @naorbedinheinrichm.5167 8 місяців тому +1

    lezgo prime newton

    • @jamal369
      @jamal369 8 місяців тому

      40 sec ago

  • @luxxulyanite
    @luxxulyanite 8 місяців тому

    This video should have been called "Curb your L'Hospital's rule"

  • @luisangel25
    @luisangel25 8 місяців тому

    "those stop learning, stop living"

  • @godussop9882
    @godussop9882 8 місяців тому

    NICEEEE

  • @varun3282
    @varun3282 8 місяців тому

    I tried expansions it didn't work out

  • @general_paul
    @general_paul 8 місяців тому +2

    Me who forgets about L'Hopital everytime, this time: 🦍🦍🦍
    Another reason that L'Hopital won't work according to me is that n^x's derivative returns n^x*ln(n) so, the derivative function is technically nearly similar

    • @jumpman8282
      @jumpman8282 8 місяців тому

      LOL, I tend to forget STEP ONE, which is to apply direct substitution.
      I've lost count of the times I found myself lost in a jungle of algebra, just to realize that all I needed to do was "plug it in".
      They say we learn from our mistakes. Well, I guess this is my personal exception to that rule :)

  • @mikefochtman7164
    @mikefochtman7164 8 місяців тому

    Well.... I was replacing terms with e. Something like e^(xln(7))+e^(xln(8))-e(xln(9)) and getting no where. That wasn't pretty. lol

  • @Jon60987
    @Jon60987 5 місяців тому

    GREAT PROBLEM :) :) :)

  • @tomasbeltran04050
    @tomasbeltran04050 8 місяців тому

    Niceeeee

  • @gedmundos1
    @gedmundos1 6 місяців тому

    The limit is wrong. Let us observe the denominator -7^(-t). He transformed it to +(1/7^(t)).

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому

      You think it's wrong or you know it's wrong?

    • @m4n_plasma273
      @m4n_plasma273 6 місяців тому

      In the end he corrected it, even if it wasn’t corrected so what? We did learn the thinking process which is the main goal, isn’t it?

  • @jamal369
    @jamal369 8 місяців тому +1

    Hi again

  • @Harbingersknight21
    @Harbingersknight21 8 місяців тому

    Man i applied L hospital rule and got stuck 😅

  • @Yu28_
    @Yu28_ 8 місяців тому +1

    Answer = 1 is it (Spammer)

  • @anonakkor9503
    @anonakkor9503 8 місяців тому

    niceeee hahahaa

  • @cribless810
    @cribless810 8 місяців тому +1

    TitIe got me cIicking immediateIy🤣🤣