df2genind adegenet - finding optimal number of clusters using iterative K means in R

Поділитися
Вставка
  • Опубліковано 5 лют 2025
  • Population Structure Analysis ###
    #################################################################################
    ######## Find optimal number of clusters using iterative K means approach #######
    #################################################################################
    library(adegenet)
    library(dplyr)
    library(ggplot2)
    #Read in csv data
    setwd('C:/Users/falk/Google Drive/PhD/PhD Projects/Blue Steel/2017 Data - Growth Chamber/Genotypic Data stuff')
    GWAS_GD = read.table("GWAS_GD.txt", sep = '\t',header = T)
    GD = GWAS_GD[1:292,5:ncol(GWAS_GD)]
    metadata = read.csv("C:/Users/falk/Google Drive/PhD/PhD Projects/Blue Steel/2017 Data - Growth Chamber/Randomizations Origin Data GWAS Names/Meta_data.csv")
    obj = df2genind(GD, ploidy=2,sep = '/t') # 1. Make genind object to be used in further analysis
    grp = find.clusters(obj, max.n=20, n.pca=200, scale=FALSE) # 2. try different values of k (interactive) using kmeans
    #The rule of thumb consists in increasing K until it no longer leads to an appreciable improvement of fit (i.e., to a decrease of BIC)
    number of accessions per group
    table(grp$grp)
    grouping = data.frame(GWAS_GD$name,grp$grp)
    colnames(grouping)[1] = 'name'
    colnames(grouping)[2] = 'subpop'
    #Write out grouping of genotype
    write.csv(grouping, "Population_Clustering_6groups.csv",row.names = F)
    grouping = read.csv("Population_Clustering_6groups.csv")
    metadata = read.csv("C:/Users/falk/Google Drive/PhD/PhD Projects/Blue Steel/2017 Data - Growth Chamber/Randomizations Origin Data GWAS Names/Meta_data.csv")

КОМЕНТАРІ • 2

  • @countygrandma
    @countygrandma 5 років тому

    Do you have this code stored on a github?

    • @KevinFalk
      @KevinFalk  5 років тому +1

      You can find this code on my Github, try the link below:
      github.com/mighster/Data_Visualization_Graphs/blob/master/Dendrogram_tutorial.R