Fermat told me this fraction was important.

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 25

  • @luisaleman9512
    @luisaleman9512 Рік тому +42

    This should have been Fermat's little quotient, since it arises from Fermat's little theorem.

  • @buddhabuck
    @buddhabuck Рік тому +13

    Another possible extension would be to Euler's little quotient: What numbers n make (2^phi(n)-1)/n a perfect square?

  • @goodplacetostop2973
    @goodplacetostop2973 Рік тому +14

    13:17 *insert joke about Fermat’s margin note*

  • @Alan-zf2tt
    @Alan-zf2tt Рік тому +3

    Brilliant! Love the use of decomposition and deductions

  • @udic01
    @udic01 Рік тому +7

    8:28 if n=1 => b^2=1 => b=1 => n=1? why the calculation? if n=1 then p=3. no need to find b.

  • @MathOrient
    @MathOrient Рік тому +1

    Absolutely fascinating! This video on Fermat's little quotient blew my mind. I never realized the intricate connections between this concept and Fermat's little theorem

  • @behnamashjari3003
    @behnamashjari3003 Рік тому +2

    Michael is a genius❤

  • @GandalfTheWise0002
    @GandalfTheWise0002 Рік тому +12

    I tossed the generalized version into Mathematica for a few smaller integers. Interestingly, there are other solutions where a>2. (a,p) = (3,2) (3,5) (7,3) (9,2) (19,2) (26,3) (33,2). The ones where p=2 form a regular sequence of 3,9,19,33,51,73... where the difference between terms is 4n+2 so x[1]=3, x[n+1]=x[n]+4n+2. The first ones where p=3 are 2, 7, 26, 97, 362, 1351, 5042... Rather interestingly, p=5 only has a single solution for a

    • @Brollyy349
      @Brollyy349 Рік тому +2

      For p=2 you can substitute into (a^(p-1)-1)/p = x^2 and after some simple algebra you get a = 2x^2+1

    • @ItalianMappingBestMapper
      @ItalianMappingBestMapper Рік тому +2

      Okay, I gave this problem a try, and I found the proof for the formula of the solutions when p=3, it can be proved by induction and there is a recursive formula for the various families of solutions: [a+1]= 2a²-1

  • @manucitomx
    @manucitomx Рік тому

    A lot can come out from a little quotient, but no gnarliness.
    Thank you, professor.

  • @pierreabbat6157
    @pierreabbat6157 Рік тому +1

    What if you use other numbers than 2 as a?

  • @mcbeaulieu
    @mcbeaulieu Рік тому

    Found 3 and 7 from the problem's writing yay lol

  • @tinnguyen2031
    @tinnguyen2031 Рік тому

    What values of a makes the quotient a perfect cube and so on?

  • @aweebthatlovesmath4220
    @aweebthatlovesmath4220 Рік тому +3

    Next: fermat's little quotient

  • @charleyhoward4594
    @charleyhoward4594 Рік тому

    this guy is too smart for me ...

  • @pondcurtis9725
    @pondcurtis9725 Рік тому

    how is 1 mod p not 1?????

  • @szymonraczkowski9690
    @szymonraczkowski9690 Рік тому

    cool

  • @PhoenixInfeno
    @PhoenixInfeno Рік тому +1

    Man, if you're gonna throw in a shout out to cryptography, should have gotten NordVPN to sponsor the video!

  • @Unidentifying
    @Unidentifying Рік тому

    Can someone help me solve ? ∫ e^(- x^2/(2+ix)) * e^(- x^2/(2-ix)) dx from -inf to inf

    • @Kycilak
      @Kycilak Рік тому +1

      This integral does not converge. When you multiply what's inside the integral you get int of e^(-4x^2/(4+x^2)). As this function limits to e^(-4) in +- inf the integral cannot converge. It would have to limit to 0 (this is necessary but not sufficient condition).

    • @Unidentifying
      @Unidentifying Рік тому

      @@Kycilak thank you brother, notation error make this one divergent, sorry

  • @parajulisugam
    @parajulisugam Рік тому

    Can anyone help me? I am a math olympian and I dont have money to buy laptop? I will give you 10x in the future?

  • @yedidiapery
    @yedidiapery Рік тому

    tbh i like your videos but i'm not subscribed because you upload so many videos, and i only watch a few of those