Linear Regression Practical Implementation In Hindi

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 120

  • @SubhashKumar-ek2tm
    @SubhashKumar-ek2tm 5 місяців тому +14

    fit_transform is used on training data to learn parameters and transform it, while transform is used on new or unseen data to apply previously learned transformations without re-learning the parameters.

  • @ParthPatel-db4tk
    @ParthPatel-db4tk Рік тому +65

    fit_transform() is used on the training data to learn the scaling or transformation parameters and then applies the same transformation to the training data. transform() is used on new data (e.g. test data) to apply the same transformation that was learned on the training data.

    • @ritikkohad5045
      @ritikkohad5045 Рік тому

      Thanks brother

    • @ayushpant8290
      @ayushpant8290 Рік тому

      thanks bro

    • @kartiknampalliwar8603
      @kartiknampalliwar8603 8 місяців тому

      i am unable to do first step i.e load_ boston is showing error can you please help me

    • @dhmahbub
      @dhmahbub 7 місяців тому

      @@kartiknampalliwar8603 that data is not available in the new version. You can alternatively use "fetch_california_housing" and load it. Probably that is the similar sort of data.

    • @hiteshkotian6023
      @hiteshkotian6023 6 місяців тому

      @@kartiknampalliwar8603 load_boston is no longer available use some other data like load_diabetes or something

  • @ujjvalbhardwaj9061
    @ujjvalbhardwaj9061 2 місяці тому +5

    00:01 Practical implementation of linear regression
    02:32 Explaining features and target in linear regression
    05:22 Preparing data for linear regression
    08:12 Understanding data normalization and standardization
    11:00 Implementing linear regression using steps
    13:08 Implementation of cross-validation for linear regression
    15:47 Using negative mean squared error for model optimization
    18:21 Verification is crucial for accurate predictions.
    20:43 Understanding the practical implementation of linear regression and its key steps
    23:11 Linear regression calculates the average change in one variable based on another

  • @PRITAMHALDER-f7y
    @PRITAMHALDER-f7y 2 місяці тому +3

    scaler.transform(X_test) used to calculate mean and stander deviation on test data to be used future scaling .

  • @meetsaurabhtiwari
    @meetsaurabhtiwari 9 місяців тому +2

    Sir , your effort is really wonderfull and is inspiration. please make a separate playlist for EDA and feature engineering , lakhs of aspirants are wait , please make it on serious note.

  • @luckythecutepie
    @luckythecutepie Рік тому +3

    fit transform is used in train data set to predict the value(linear regression) test data set just to se our accuracy with the model.

  • @talhagalaria571
    @talhagalaria571 2 роки тому +7

    fit transform and transform = we want to keep as a surprise is no longer unknown to our model and we will not get a good estimate of how our model is performing on the test (unseen) data which is the ultimate goal of building a model using machine learning algorithm.

    • @patelkdhawal
      @patelkdhawal 2 роки тому +2

      Can you elaborate more. Please

  • @avinashmirchandani8731
    @avinashmirchandani8731 2 роки тому +4

    Please more videos on machine learning also practical video more
    Thankyou

  • @HasnainMazharRizvi
    @HasnainMazharRizvi Рік тому +21

    playlist ke hisab se video dalo sir, theory aur practical implementation ke video mein bahot fark hai , much samjh nhi aya, r2 score, cross validation , xtrain ye sab kya hai theory mein to that he nhi ye sab.

  • @code_with_somesh09
    @code_with_somesh09 Місяць тому +1

    `load_boston` has been removed from scikit-learn since version 1.2.
    The Boston housing prices dataset has an ethical problem: as
    investigated in [1], the authors of this dataset engineered a
    non-invertible variable "B" assuming that racial self-segregation had a
    positive impact on house prices [2]. Furthermore the goal of the
    research that led to the creation of this dataset was to study the
    impact of air quality but it did not give adequate demonstration of the
    validity of this assumption.

  • @anujgupta328
    @anujgupta328 6 місяців тому +3

    Gradient decent iss implementation mein kaise implement kaise hua?? Agar back end mein hua toh alpha value kaha diya?? @krish please explain

  • @xyz3588
    @xyz3588 7 місяців тому +4

    sir sklearn na dataset remove kar deya ha. dataset fetch nahi ho raha ha

  • @Aman-yu4re
    @Aman-yu4re 6 місяців тому +4

    Do I need to know sklearn before starting this playlist ?

  • @JagFi
    @JagFi Рік тому +11

    Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??

    • @ausking3081
      @ausking3081 11 місяців тому

      import pandas as pd
      import numpy as np
      data_url = "lib.stat.cmu.edu/datasets/boston"
      raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
      data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
      target = raw_df.values[1::2, 2]
      or install version 1.0.1
      pip install scikit-learn==1.0.1

  • @pratishzaware1430
    @pratishzaware1430 2 роки тому +1

    Nicely taught the algorithm..Thanks for making learning simple

  • @faheemsyed9481
    @faheemsyed9481 7 місяців тому

    great job sir jee

  • @Gattu_g
    @Gattu_g 2 роки тому

    Sir you explain soo good please continue making videos in hindi

  • @neeshantn9742
    @neeshantn9742 2 роки тому +5

    Great video sir...just one concern...Why we are not checking VIF?

  • @vikasvachheta7135
    @vikasvachheta7135 Рік тому

    *** please create EDA and Feature engineering playlist in HINDI ***

  • @TuneTube312
    @TuneTube312 4 місяці тому

    Thank you sir 🙏

  • @jaydodhiawala4117
    @jaydodhiawala4117 Рік тому +4

    sklearn removed load_boston which dataset i can use to follow along?

    • @krishnaikhindi
      @krishnaikhindi  Рік тому +5

      Fetchcaliforniadataset

    • @dnswm95
      @dnswm95 Рік тому

      @@krishnaikhindican we use fetch_california_housing ??

    • @nikkhiliitbhu1677
      @nikkhiliitbhu1677 4 дні тому

      @@dnswm95 what the concultion of this question can anyone give ans?

  • @kishormagar3160
    @kishormagar3160 2 роки тому +1

    Very good Sir

  • @Yash_Patil.
    @Yash_Patil. Рік тому

    bcoz we evaluate our model on test data set

  • @yadnyeshkhotre2001
    @yadnyeshkhotre2001 Рік тому +1

    boston dataset is been reomved from the kcikit liberary

  • @roshanbhattad4493
    @roshanbhattad4493 3 місяці тому +7

    boston dataset is removed from sklearn

    • @debasmitabasu2106
      @debasmitabasu2106 Місяць тому +1

      you can go for california housing dataset for same work linear regression. it works.

  • @jatinjoshi1830
    @jatinjoshi1830 Рік тому

    Thank You

  • @nileshkshatriya5827
    @nileshkshatriya5827 2 роки тому

    Please keep uploading videos in hindi

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 2 роки тому

    Sir please l1 and L2 k liye bhi video banaiye

  • @Prachi_Gupta_zeal
    @Prachi_Gupta_zeal Рік тому +1

    what is random state= 42 in that train test split command?

  • @Sachin-xj1oq
    @Sachin-xj1oq 5 місяців тому

    Can anyone please explain displot discussed in this video?

  • @satyamghule147
    @satyamghule147 Рік тому +1

    i use the same model on 'fetch_california_housing' dataset and the mse i got is 0.5.

  • @shashankmokashi1406
    @shashankmokashi1406 2 роки тому

    Good video sir.

  • @rohannagar3041
    @rohannagar3041 Місяць тому +1

    sir i can't understand anything,should i learn nummpy and pandas for this

  • @alirathore6818
    @alirathore6818 2 роки тому +2

    why are we using 'neg_mean_squared_error'
    can u please share link linear regression loss function video ?

  • @sumitsamanta7416
    @sumitsamanta7416 Місяць тому

    idid not got the same graph in the end my varinence is more then (-10)--10 wht to do help

  • @MnB_music
    @MnB_music 2 роки тому

    Simply amazing ❤

  • @anilmurmu6675
    @anilmurmu6675 2 роки тому +4

    What value of MSE , RMSE, R-square should be taken into consideration to come to conclusion that model build is accurate one? Is there any range of value for MSE, RMSE and R-square ?

    • @aftab6417
      @aftab6417 Рік тому

      R2 to be gerater than .70 that is 70%

  • @sauravsahay8803
    @sauravsahay8803 7 місяців тому

    How is it that you are predicting on x_test but calling your y_test as truth value?

  • @swapnilkulat5990
    @swapnilkulat5990 Рік тому

    The Boston datasathas been removed from sklearn....

  • @brahmadevrai4369
    @brahmadevrai4369 2 роки тому

    Sir when new batch start for data science?

  • @sonalikamble5929
    @sonalikamble5929 5 місяців тому

    Great thank you

  • @nileshnaik3111
    @nileshnaik3111 2 роки тому

    nice video sir

  • @manchalamani9475
    @manchalamani9475 Рік тому

    Sir this can be explain in English language some what difficult to understand Hindi

  • @yamrajoli3834
    @yamrajoli3834 9 місяців тому

    I am seeing you videos just to similary apply another multivarite problem but when I got the displot(with kind=kde) it came similar but of the rang eof the 1e^9 so How can decrease the error should I use the tunning or what ?

  • @rakibulislamrabbi373
    @rakibulislamrabbi373 8 місяців тому

    Sir the boston dataset is no more available in the scikit-learn datasets also can't load the boston dataset in juyter notebook can U please provide any solution for that?

    • @innocentgamer8670
      @innocentgamer8670 8 місяців тому

      you can use the alternate dataset like california housing , or you can search and save the boston dataset , and use pd.read_csv() method to use that dataset

    • @AbhijeetDewangan-gr9sj
      @AbhijeetDewangan-gr9sj 8 місяців тому

      please use " from sklearn.datasets import fetch_california_housing " alternative of Boston

  • @moghalkarishma2378
    @moghalkarishma2378 Рік тому

    here linear regression doing but why taken independent features more than 1 feature can anybody tell me

  • @paraguchbagle6413
    @paraguchbagle6413 6 місяців тому +1

    bouncer ho gya ye video

  • @KushagraBhardwaj-f5j
    @KushagraBhardwaj-f5j 6 місяців тому

    where is the theory playlist? can someone please attach the link in the reply to this comment

  • @visshalgupta
    @visshalgupta Рік тому

    Sir i didnt able to understand what is y the dependent variable . I mean which column is gettimg predicted ?

  • @datasciencegyan5145
    @datasciencegyan5145 2 роки тому

    Krish ap kon sa video software use kerto ho recording k liye

  • @Gangstersongs125
    @Gangstersongs125 6 місяців тому

    Sir in this where us accuracy

  • @NavyaTrilokD
    @NavyaTrilokD 6 місяців тому

    But what are we predicting here? Can someone explain please..what does the values in "reg_pred" tell us? what is the difference between values in target features array and "reg_pred" values?

    • @NavyaTrilokD
      @NavyaTrilokD 6 місяців тому

      so we are predicting the output feature house pricing...for the independent features in x_test, dependent feature or actual values are in y_test. After applying linear regression, predicted values are in reg_pred. In linear regression we find the difference between actual values and predicted values, that is the error. MSE is that error here.

  • @harshsrivastava1662
    @harshsrivastava1662 Рік тому

    kind='kde' not showing that graph

  • @dheerajgupta3805
    @dheerajgupta3805 Рік тому

    subscribed

  • @BEEAnkitgupta
    @BEEAnkitgupta Рік тому

    sir if my accuracy_score is 0.85 then my predication model is good or bad?

  • @lakshyajain7435
    @lakshyajain7435 Рік тому +2

    Kuch samajh nahi aa raha...

  • @sowmyavvasu84
    @sowmyavvasu84 Рік тому

    Sir i have build the model in linear regression and performance of evaluation metrics are also done. Now additional I want to add one more new row(instance) and find the performance of it how to do can you guide me pl. How to check the performance particularly that single row.

    • @filmybeats4827
      @filmybeats4827 Рік тому

      Bro I couldn't understand this to that level how can I understand these concepts as sir is directly implemented it so

  • @ajaykushwaha4233
    @ajaykushwaha4233 2 роки тому

    How to know model is overfitted or stable model.

    • @entertainmenthub7700
      @entertainmenthub7700 2 роки тому

      if it perfectly fits to the traning data in simple meanings if it remember the data instead of learning it overfits

  • @tusharsalunkhe7916
    @tusharsalunkhe7916 Рік тому

    Why Y_train is not standardized? Please answer

    • @satyamghule147
      @satyamghule147 Рік тому +1

      Standardization is typically applied to the feature variables (X_train) rather than the target variable (Y_train) in machine learning.

  • @toufique3390
    @toufique3390 5 місяців тому +2

    too complex🙁

  • @abhinavbm3338
    @abhinavbm3338 Рік тому

    what is score?

  • @AmitSharma-oh5uw
    @AmitSharma-oh5uw 9 місяців тому

    sir ap dataset bhi dal diya kro.
    load_boston to ho ni rha hai hmara.
    kaise kre ab

    • @niharikakhanna3585
      @niharikakhanna3585 9 місяців тому

      same problem, kuch solution mila?

    • @AmitSharma-oh5uw
      @AmitSharma-oh5uw 9 місяців тому

      @kakhanna3585 hi niharika are you a data science student.
      pehle mene socha inke 38 videos hi hai machine learning ke.
      and me bhut jldi complete kr lunga.
      but me 2 video se age hi bdha hi ni abhi tk.
      ye beginers jaise ni pdha rhe hai. and mujhe ek ek chiz likhna pd rha hai, ki sir kya bol rhe hai video me.
      and wo atleast definations bhi likhwate to smjne me easy hota.
      it's difficult to understand.
      kya apko koi aur playlist pta hai. jisse jo machine learning ke liye ho.

    • @piyushff3258
      @piyushff3258 3 місяці тому

      use fetch_california_housing class alternative of boston

  • @B.D.M1999
    @B.D.M1999 9 місяців тому

    load boston has been removed

    • @AbhijeetDewangan-gr9sj
      @AbhijeetDewangan-gr9sj 8 місяців тому

      please use " from sklearn.datasets import fetch_california_housing " alternative of Boston

    • @MehtabAfzal-i3t
      @MehtabAfzal-i3t 7 місяців тому

      Bhai fetch wali BHI Nahi Chal rahi

  • @hannahvm8044
    @hannahvm8044 Рік тому

    Plz do videos in English🥲

    • @adila8128
      @adila8128 Рік тому

      If you're looking for videos in English you can refer to his other channel. You will find all the videos in the English language.

  • @m.laxminarayanreddy
    @m.laxminarayanreddy 2 роки тому

    i got a score of "0.017460452225004253" why i got low score?

  • @__________________________6910
    @__________________________6910 2 роки тому

    Noice

  • @HoneySingh-cu3pw
    @HoneySingh-cu3pw 9 місяців тому

    Esi video bnaya naa kro jo kisi k leptop m work naa kre kya jya oerte ho smj nhi atta padhne bethq toh sara dinak khrab ho gya kuch hua nhi

  • @self_official
    @self_official Рік тому

    sir aap JSPM Tathwade ke student hai kya

  • @trojanhorse8278
    @trojanhorse8278 11 місяців тому

    youtube shanel

  • @MrPravinsoni
    @MrPravinsoni Рік тому +5

    Boston housing dataset has been removed from scikit-learn. Is there any way to load it as a bunch data??

    • @ubarbde
      @ubarbde 9 місяців тому

      from sklearn.datasets import fetch_california_housing
      housing = fetch_california_housing()

    • @RoyParihar-p4l
      @RoyParihar-p4l 6 місяців тому

      from sklearn.datasets import fetch_california_housing use this