Multivariate Analysis and Advanced Visualization in JMP (12/2017)

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 35

  • @richaneog8294
    @richaneog8294 2 роки тому +1

    wonderful sir, couldn't understand but love your voice

  • @mojtaba9767
    @mojtaba9767 3 роки тому +1

    Best JMP video that I found

  • @jemalahmed7777
    @jemalahmed7777 2 роки тому

    I become very happy from biometrics analysis in jmp,so researchers should be keep it up to find world problem solver technology system for un solved problem.

  • @kikiy2972
    @kikiy2972 4 роки тому +3

    This is the best JMP video I've watched! You're such a great instructor!

  • @stuttigrit
    @stuttigrit 5 років тому +2

    What a great demonstration / explanation and visualizations of how to perform multivariate analysis. Thanks!

  • @rachelcyr4306
    @rachelcyr4306 3 роки тому +1

    You are amazing, this video has given me such an appirecation for JMP

  • @MIZRAIM1984
    @MIZRAIM1984 4 роки тому +3

    I wish all the teachers in tutorials were like you! I am amazed by your videos on JMP Pro!

  • @PatrickGiuliano
    @PatrickGiuliano 6 років тому +3

    Fantastic tutorial Julian, I'd love to see you expand on some of the methods you highlighted and introduced @ the end of this video (Heirarchical Clustering, Latent Class, Principal Components) in a separate video.

  • @planaconsultoria
    @planaconsultoria 2 роки тому +1

    This video was very well done! Thanks for sharing! Thinking about making something similar in other languages! 😁

  • @RegularFellow25
    @RegularFellow25 5 років тому +1

    amazing tutorial! I'm working with Jump and didn't know most of the tricks

  • @kiegh
    @kiegh 6 років тому +1

    Hi there. Thanks for this wonderful explanation of how to use JMP. I am very thankful for your explanations and I look forward to learning more from you about this tool!

    • @phillipr6596
      @phillipr6596 6 років тому +1

      Always positive reviews with you....

    • @kiegh
      @kiegh 6 років тому +1

      nice...

  • @prettyscientist87
    @prettyscientist87 4 роки тому +1

    Wonderful tutorial. Very helpful thank you and I appreciate it.

  • @superuser8636
    @superuser8636 4 роки тому +1

    Great tutorial, thanks, Dr.!

  • @mau_lopez
    @mau_lopez 6 років тому +1

    Great tutorial, fantastic explanation!

  • @ThirdPlanetStudio
    @ThirdPlanetStudio Рік тому +1

    Great tutorial!

  • @marcastro8052
    @marcastro8052 3 роки тому +1

    Excellent. Thank you, sir.

  • @arnaudzida9347
    @arnaudzida9347 6 років тому +1

    Very helpful your tutorial, thanks

  • @vsandu
    @vsandu Рік тому

    Brilliant, cheers!

  • @javajoe4
    @javajoe4 8 місяців тому

    Is the dataset available for download? Would really be beneficial to follow along.

  • @cliffordino
    @cliffordino 6 років тому +1

    Super helpful. Thanks.

  • @azizozturk2657
    @azizozturk2657 6 років тому +1

    Great analysis thanks alot

  • @sawma3714
    @sawma3714 Рік тому

    What if a data has a lower end and an upper end value which should be treated as one unit vs another unit? For example: Min temperature and max temperature of a water vs fish population or such

  • @hswn1
    @hswn1 5 років тому

    Thanks for the tutorial. Just a quick one, what does the pink area around the line-of-best-fit represent?

    • @JulianParrisPhD
      @JulianParrisPhD  5 років тому +1

      Hi Saad -- that shaded region is the confidence region. Like a confidence interval for a point estimate (like a mean), the confidence region or confidence band is a representation of uncertainty about where that linear relationship is in the population from which the current sample was drawn. In other words, the different lines that could be in that region all reflect reasonable candidates for the true relationship between the Y and X variables. Here's the link to the wikipedia page for more information: en.wikipedia.org/wiki/Confidence_and_prediction_bands

    • @hswn1
      @hswn1 5 років тому

      Julian Parris Thanks very much Julian

  • @johnfox17
    @johnfox17 6 років тому +1

    Thank you!

  • @Stephane1750
    @Stephane1750 3 роки тому

    you sound like a young, optimistic Sam Harris! ;)

  • @Aesthetics10000
    @Aesthetics10000 Рік тому

    How to do significane level test

  • @hectorgomez9321
    @hectorgomez9321 4 місяці тому

    hi James Covello

  • @rachelcyr4306
    @rachelcyr4306 3 роки тому

    @Julian, would it be acceptable to use onehot encoded categorical variables?

    • @PatrickGiuliano
      @PatrickGiuliano 2 роки тому

      I think you can use one-hot encoded categorical variables but in general it's best to really pay attention to both your data type and modeling type in JMP! There is a reason why these two pieces of metadata are so important for each column [and are the first two column properties you see for every column in JMP] because they tell JMP which models are appropriate for your particular data situation (graphs/analyses that are not appropriate will not be selectable in JMP's workflow). For those that are unfamiliar with one-hot encoding here is a good intro read: www.educative.io/blog/one-hot-encoding#what