DESTROYING A MONSTER INTEGRAL: int (xln(1+e^x))/(1+x^2)^2 from -ve to +ve infinity

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 48

  • @maths_505
    @maths_505  Рік тому +26

    The answer is pi/4
    I forgot a factor of 1/2 during the integration by parts

    • @郑安宏-p8p
      @郑安宏-p8p Рік тому +1

      i thought i was wrong 😂, just let t=-x, simplify it. Then there’s going to be some easy integrations. Don’t even need a pen to write.

  • @РафикБасыров-о6ц
    @РафикБасыров-о6ц Рік тому +18

    There is a much simpler method. Making substitution x -> -x reduces the integration to elementary

  • @ericthegreat7805
    @ericthegreat7805 Рік тому

    I think a way to conceptually understand this is by a "limiting integral".
    We have
    I = S_-oo^oo x*ln(1+e^x)/(1+x^2)^2 dx
    Now what is interesting about this integral is that if you take the limit x --> +oo, we can define this to be, since e^x >> 1,
    IL ~= S_-oo^oo x*ln(e^x)/(1+x^2)^2 dx = S_-oo^oo x*x/(1+x^2)^2 dx = S_-oo^oo [x/(1+x^2)^2]*x dx
    which we then integrate by parts
    Differentiate x
    Integrate [x/(1+x^2)^2]dx --> -1/2(1+x^2)^2
    and in the first limit we get
    IL ~= 0 - (-1/2)*S_-oo^oo dx/(1+x^2)^2 = 1/2 * (pi/2) = pi/4 which is exactly our result.
    So using the integral version of the squeeze theorem, if IL = lim(I as x-> oo) = pi/4 then so does I at the bounds x --> +-oo since the integral is symmetric.

  • @michaelbaum6796
    @michaelbaum6796 Рік тому

    This is a real ingenious solution. I enjoyed the video👍

  • @manstuckinabox3679
    @manstuckinabox3679 Рік тому

    I was an integration by parts hater, until I met this integral...
    bro this was so awesome! although I dought that I would have been able to guess a factorization of e^x/2... thanks for teaching me this trick!

  • @danielrosado3213
    @danielrosado3213 Рік тому

    What program do you use for your videos? I love the way you can scroll right down.

  • @07_Obi
    @07_Obi Рік тому +1

    Your solution is more elegant than mine. I IBP like you did but then I brute forced the resultant integral by splitting the integral at 0 and using geometric series for 1/(1+exp(-x)). Had to derive some other general integrals so it took me almost 2 whiteboards to get to the answer XD.

  • @nuranichandra2177
    @nuranichandra2177 Рік тому

    This is not annihilation but nuking. Good one

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 Рік тому

    That was amazing, thank you very much.

  • @aayushiajith.
    @aayushiajith. Рік тому

    Can anyone suggest me a book to start with feynmanns integrals???

    • @maths_505
      @maths_505  Рік тому

      There's no such book....however whenever you see an integral, try going feynman on it....that's how you practice

  • @subhrayanbarman1654
    @subhrayanbarman1654 Рік тому +3

    I = int (-inf, +inf) xln(1+e^x) /(1+x²)²dx
    Let, x=tant=>dx=sec²tdt
    I= int[-π/2, π/2] sintcost ln(1+e^tant) dt
    =int[-π/2, π/2]-sintcost ln(1+e^-tant) dt
    =int[-π/2, π/2] [-sintcost ln(1+e^tant) +sin²t ]dt
    =>2I =int[-π/2, π/2]sin²tdt
    2I =2[0, π/2]sin²tdt
    =2[0, π/2]Cos²tdt
    =>2I = [0, π/2](sin²t+cos²t)dt
    =π/2
    I=π/4

  • @MayukhMondal-ob8fp
    @MayukhMondal-ob8fp Рік тому +1

    I think there should be -1/2(1+x^2) at 0:41 , If I am wrong rectify me....

    • @maths_505
      @maths_505  Рік тому +1

      You're right...I forgot about that factor 🤣

  • @zunaidparker
    @zunaidparker Рік тому

    Holy. Shit! That was awesome!

  • @EtienneSturm1
    @EtienneSturm1 Рік тому

    awsome !

  • @Decrupt
    @Decrupt Рік тому +1

    DESTROYING INTEGRALS WOOOO!

  • @holyshit922
    @holyshit922 Рік тому

    Integration by parts + odd even decomposition of function
    odd even decomposition of function
    Function can be decomposed into
    f(x) = (f(x)-f(-x))/2 + (f(x)+f(-x))/2
    and (f(x)-f(-x))/2 is always odd and (f(x)+f(-x))/2 is always even
    Finally we get integral 1/2Int(1/(1+x^2),x=0..infinity)

  • @mohnedhammadi4106
    @mohnedhammadi4106 Рік тому

    The result should be pi/4

  • @danielrosado3213
    @danielrosado3213 Рік тому

    Amazing

  • @yudoball
    @yudoball Рік тому +1

    Lol that's beautiful

    • @maths_505
      @maths_505  Рік тому +1

      Bro! been a while
      How's it going???

    • @yudoball
      @yudoball Рік тому

      @@maths_505 oh damn, you remembered me! That's crazy haha
      Thanks. I'm doing fine :D just haven't been doing math lately xD

    • @yudoball
      @yudoball Рік тому

      @@maths_505 what about you, how are you ?

    • @maths_505
      @maths_505  Рік тому +1

      @@yudoball doing good bro
      Just hit 11k subs alhamdullilah so looks like I'm doing something right 😂

    • @yudoball
      @yudoball Рік тому

      @@maths_505 that's nice. And you had a couple videos that blew up with +100k views.
      Stay healthy and take care of yourself bro :D.

  • @NurHadi-qf9kl
    @NurHadi-qf9kl Рік тому

    Misalkan y=1+x^2 maka x dx=(1/2)d(1+x^2)=(dy/2).
    |=|ln(1+e^x).y^-2(dy/2)

  • @piyushraj760
    @piyushraj760 Рік тому

    i think answer should me pi/4 can u please check once

    • @maths_505
      @maths_505  Рік тому +1

      Yup I forgot the 1/2 on the way

  • @rohkofantti8673
    @rohkofantti8673 Рік тому +1

    Monsters don't exist.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    1/2ln2+1/4pi....no,correggo ln2 non c'è

  • @petterituovinem8412
    @petterituovinem8412 Рік тому

    Maths 420

  • @hayksargsyan4416
    @hayksargsyan4416 Рік тому

    Wtf

  • @SatyanarayanaMudunuri
    @SatyanarayanaMudunuri Рік тому

    your pens are distracting and presentation & writing very cluttered

  • @AC-tn4it
    @AC-tn4it Рік тому

    Why isn’t this integral Odd?