_-substitution intro | AP Calculus AB | Khan Academy

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 159

  • @omgflyingbanana
    @omgflyingbanana 9 років тому +209

    FOR PEOPLE ASKING WHERE THE DU WENT:
    Derivatives and integrals are inverse functions, so they cancel each other out. When you INTEGRATE a DERIVATIVE (which is du) it cancels du out.

    • @sexydog789
      @sexydog789 6 років тому +4

      omgflyingbanana THANK YOU OMG.

    • @victorserras
      @victorserras 6 років тому +19

      derivatives and integrals are inverse operations, not inverse functions.

    • @taylorinase8094
      @taylorinase8094 6 років тому +23

      @@victorserras 100% of people knew what he means, don't be that guy

    • @edward4699
      @edward4699 5 років тому +2

      Honestly, I didn't XD

    • @tyrushorn5918
      @tyrushorn5918 5 років тому

      Bro i thought I would never understand. thank you

  • @an50331
    @an50331 11 років тому +227

    can i do a you-substitution to replace my calc prof?

    • @iiVEVO
      @iiVEVO 4 роки тому +4

      @Kathan Jani are u still alive

    • @iiVEVO
      @iiVEVO 4 роки тому +2

      @Kathan Jani no i diedededlyded

    • @tonyhaddad1394
      @tonyhaddad1394 3 роки тому +1

      Are you still alive ??? Pls say yes 😭

    • @quicksilverchaos4122
      @quicksilverchaos4122 3 роки тому

      @@tonyhaddad1394 not meeeee

    • @woosix7735
      @woosix7735 2 роки тому

      XDDDDD

  • @xXxMETALISFOREVERxXx
    @xXxMETALISFOREVERxXx 9 років тому +53

    you just explained in 5 minutes what took my professor 2 class periods( 5 hours). I thank you.

  • @Chad2Base
    @Chad2Base 10 років тому +33

    By far the best explanation of this concept on youtube

  • @km1cn
    @km1cn 10 років тому +103

    You are literally the only reason why I'm surviving 32 credit hours per semester.

    • @hawkeye2958
      @hawkeye2958 9 років тому +9

      HOLY SHIT!

    • @ElectricMonkeyPants
      @ElectricMonkeyPants 9 років тому +28

      Wow... that's like... a lot of credits...... such schooling... many night... much coffee... so smart... numerous applause :D

    • @Cantaroji
      @Cantaroji 9 років тому +8

      ***** That's twice the amount that my college even allows. Props.

    • @Nils3OWN
      @Nils3OWN 7 років тому

      Huh? The norm on my university is 30. The department of technical physics rewards their students 30% less credits or so in general to circumvent the law of how many credits you can take per term in order for them to learn more, as well as their content being harder.

    • @zachfry4204
      @zachfry4204 6 років тому +1

      What the hell?! All I have to say is this...
      WOW

  • @nievsbest
    @nievsbest 6 років тому +50

    4:20 Nice rapping

  • @umarpatel3517
    @umarpatel3517 7 років тому +3

    Personally, AP Calculus AB was easy for me this year except for this topic. But like usual, Sal makes it so much more easier. Thanks man, years from now I'm going to be thinking about my high school years and appreciating how much you've helped me in chemistry, physics, and maths. You're the GOAT

  • @badhhdfhf
    @badhhdfhf 12 років тому +2

    Your absolutely correct.

  • @MrNate640
    @MrNate640 9 років тому +5

    Should've liked this video a year ago when I actually watched it. This is a great channel btw ty guys.

  • @jabs8540
    @jabs8540 7 місяців тому

    11 Years later, this is still one of the best math tutorial videos out there

  • @aishaazeemah4289
    @aishaazeemah4289 9 років тому +1

    People forever asking me how I study... THIS...
    Thank you Khan Academy :)

  • @peckop1793
    @peckop1793 9 років тому +2

    Great review, thanks

  • @aafiyajamal1483
    @aafiyajamal1483 10 років тому +3

    Great video! Super helpful!

  • @HD_Simplicityy
    @HD_Simplicityy 10 років тому +1

    Brilliant. This shows this concept so well.

  • @eeeeedith30
    @eeeeedith30 11 років тому

    Khan why are you such a genius?!

  • @gdogvibes1
    @gdogvibes1 12 років тому +1

    Thanks Khan!

  • @runzheliu6562
    @runzheliu6562 6 років тому +2

    Thank you! This is super helpful!

  • @tiffytiffy8036
    @tiffytiffy8036 7 років тому +3

    These videos rock!!!! Merely stating the obvious :)

  • @maheereza8983
    @maheereza8983 Рік тому

    Thank you so much sir, it cleared up a lot of my confusions, God bless you

  • @austinearp9804
    @austinearp9804 Рік тому

    Professors spend 2-3 class periods talking about one concept and people still don't get it (I'm people.) Then I watch a 5 minute video from you and it's easy.

  • @vikramprakash853
    @vikramprakash853 9 років тому +1

    loved the explanation

  • @mathsandmore8006
    @mathsandmore8006 8 років тому +1

    Thanks ! that was very useful 😊

  • @jumperluk6267
    @jumperluk6267 7 років тому +2

    ...this is equal to u.
    That pun made me feel so integrated...
    omg... Pun-ception

  • @HMistry100
    @HMistry100 8 років тому +1

    Thank you so much!

  • @pyrokid1995
    @pyrokid1995 11 років тому

    Khan is the best!

  • @jeremyho6139
    @jeremyho6139 8 років тому

    u r an amazing teacher

  • @gabrielchatman6732
    @gabrielchatman6732 5 років тому

    For me it's simple look
    The primitive of ue^u ' is e^(u) so you just have to replace

  • @danonad
    @danonad 11 років тому +1

    very helpful, thanks :)

  • @mralexsduarte
    @mralexsduarte 12 років тому

    Nice example Khan!!!

  • @matthewwroblewski8752
    @matthewwroblewski8752 10 років тому +1

    Khan Academy 4 life!

  • @omarmamood3256
    @omarmamood3256 7 років тому

    The derivative of an exponent is the exponent times it's power's derivative so the integral will be e^(x^3 + x^2)

  • @rezomegrelidze
    @rezomegrelidze 12 років тому

    Integrate Sin[x]/sqrt(Cos[x]) dx

  • @MTBkid42
    @MTBkid42 11 років тому +21

    so does du just go away because it is part of undoing the chain rule?

    • @moek6200
      @moek6200 7 років тому +1

      when the integral sign goes away so does the du, its inverse

    • @MizaT11
      @MizaT11 7 років тому +12

      A bit of a late reply I'm afraid, that guy's probably graduated college from now XD
      However, I've had the same doubt. So thanks!

    • @MinthZe
      @MinthZe 7 років тому +3

      derivitive of e^x is equal to e^x * dx and normally dx is just 1 so the anti dirivitive cancels out that du

    • @ndoloresw
      @ndoloresw 6 років тому

      the du would cancel out bc of the chain rule (inversed)

  • @syaerfolg9644
    @syaerfolg9644 7 років тому

    {f'(x)e^f(x) = e^f(x) + c uses this and you get the answer

  • @jemcel0397
    @jemcel0397 9 років тому +5

    Why DU vanishes? It's simply because you are integrating the given equation already.

    • @quickscoping91
      @quickscoping91 9 років тому +9

      +Jem Celespara Think of 'du' as 'dx' ok? When we have a standard integral with respect to x, dx will be at the end to say 'with respect to x'. When we solve the integral the dx doesn't matter because that's all it was saying. In U-substitution when we are dealing with u instead of x we write 'du' to say 'with respect to u.

    • @shivanishah8166
      @shivanishah8166 8 років тому

      +Ruben Marquez Thank you!

  • @mohankrishna771
    @mohankrishna771 10 років тому +1

    best explanation (Y)

  • @rezomegrelidze
    @rezomegrelidze 12 років тому

    Here's a hard problem.
    Integrate (4x^3*e^x^4) dx

  • @raghulrr7696
    @raghulrr7696 5 років тому

    We need the integration in the form px+q by ax^2+bx+c

  • @yermomLeslie
    @yermomLeslie 6 років тому

    Thanks...

  • @andileshangase2748
    @andileshangase2748 9 років тому +6

    Where did the du go....?

  • @enkhbattsooj3498
    @enkhbattsooj3498 6 років тому

    Thanks@!!!!!!!!!!!!!!!!!!!!!!!!!!!

  • @dgd947a15fl
    @dgd947a15fl 7 років тому

    Wait, derrivative of e^u should be ue^(u-1). So integral of e^u should be ((u+1)e)^(u+1).

    • @bofa-zi4fj
      @bofa-zi4fj 6 років тому

      BCrafty121 thats the "power rule" which only works if the base of the exponent is a variable. E is not a variable but a number, the derivative of e^x is ln(e)e^x= e^x because the ln(e)=1

  • @Lauderdalesfinest954754
    @Lauderdalesfinest954754 12 років тому

    Emperor Khan..!

  • @AsakuraAvan
    @AsakuraAvan 10 років тому +1

    are u-substitution and integration by parts interchangeable?

    • @isavenewspapers8890
      @isavenewspapers8890 5 місяців тому +1

      Nope, they're totally different things. u-substitution undoes the chain rule; integration by parts undoes the product rule.

  • @immort4730
    @immort4730 8 років тому

    I don't understand, I initially tried it the conventional way and got (x^3+x^2)e^(x^3+x^2)+C by treating e as a constant. I don't fully understand how e works, I would imagine that int of e^u du=e^u * u + C. Sorry, if this question sounds a bit stupid, but most of my calculus is self taught and I am in geometry.

    • @ultimateHD
      @ultimateHD 8 років тому

      +Jason Zhao you can't treat e as a constant because it's to the power of x^3 + x^2

    • @immort4730
      @immort4730 8 років тому

      Huaidong Tang What I dont understand is why e is so special. e itself is a constant, yet it is not treated as one,

    • @ultimateHD
      @ultimateHD 8 років тому

      e IS a constant. However e^x is not a constant. Just like how 2 is a constant but 2^x isn't a constant

    • @immort4730
      @immort4730 8 років тому

      Huaidong Tang But we treat 2^x differently than with e^x

    • @michaelkearney2347
      @michaelkearney2347 8 років тому

      +Jason Zhao no we don't

  • @dhanvins5362
    @dhanvins5362 6 років тому

    awesome

  • @ndoloresw
    @ndoloresw 6 років тому +2

    why can’t my teacher explain it this well

  • @nexdev4780
    @nexdev4780 8 років тому

    guys, isn't that integration of e^u du is
    e^u
    ------
    u
    right?
    so, the answer should be
    e^(x^3 + x^2)
    ------
    x^3 + x^2
    amirite?

    • @marcoantonio7648
      @marcoantonio7648 8 років тому +1

      +NexDev
      Nop. e^x is basically defined in a way such that its derivative (I prefer differentiation) is e^x. Remember when you try to find the differentiation (or derivative) for e^x and you got some limit that cannot be evaluate, so that's where we defined that limit as = 1.

    • @nexdev4780
      @nexdev4780 8 років тому

      Marco Antonio Graziano de Castro thanks for the explanation m8 :D

  • @thomasjefferson5727
    @thomasjefferson5727 Рік тому

    Sal, where are you a professor so I can just take all my calculus courses through you? I'm paying $475/hr and would rather pay it to you.

  • @ambroseezzat2703
    @ambroseezzat2703 4 роки тому +1

    3:25
    Khan:
    Me: Wait, That's illegal

  • @awesomeg7284
    @awesomeg7284 9 років тому +4

    but what if the integrand lacks a factor x needed for du??

    • @isavenewspapers8890
      @isavenewspapers8890 5 місяців тому

      If it's a constant, you can multiply the inside and divide the outside by that constant. Otherwise, try finding another way to do the integral.

  • @alexreidberlin2638
    @alexreidberlin2638 10 років тому

    When you have e^u * du and you take the anti derivative, what happened to the du? I guess I'm not understanding why it can disappear instead of becoming "u" when you take the antiderivative.

    • @HD_Simplicityy
      @HD_Simplicityy 10 років тому +1

      The integral and the du both cancel. thus you see the end result as it is. Its just like when you see a square root of a number, like Square root of 3, to a power. The power cancels out the square root and you are left with a single value.

  • @Yellownealy
    @Yellownealy 11 років тому +2

    Why didn't this video exist in 2009 :'(

  • @bosamhlanga6858
    @bosamhlanga6858 11 років тому +1

    magenda!

  • @NTMihaila
    @NTMihaila 10 років тому +3

    lmao I'd give an50331 a positive vote if I could. :D

  • @mohammadtalha9343
    @mohammadtalha9343 3 роки тому

    no wonder he got into MIT

  • @gilbertobarajas2487
    @gilbertobarajas2487 7 років тому

    At about 3:15, why are we able to "move" e^(x^3 + x^2) "behind" the dx. Doesn't that change our integral?

    • @camdenfitzgerald2557
      @camdenfitzgerald2557 7 років тому +1

      it would change it, but he does this to show how you would substitute for beginners. If it helps any, what we are essentially doing here is replacing dx with du so because the dx is operating on the first function it becomes e^u du. where du = f'(x) dx. So he moved it to show that it wont effect e^f(x) except for when we substitute u.

  • @dillicous136
    @dillicous136 11 років тому +3

    lol-to baad this vid was made 15 days after my final :Q

  • @jimkeller3868
    @jimkeller3868 7 років тому

    It's unfortunate that Sal picked an "e" as part of this video. I think as part of the an introduction to u-substitutuion it confuses things.

  • @bigjoe7166
    @bigjoe7166 7 років тому

    hey is this high school or college topic?

  • @KNGPN
    @KNGPN 12 років тому

    First! :D

  • @HisBelovedQueen
    @HisBelovedQueen 9 років тому +4

    anyone explain how come we just dropped the du?

    • @dylanloeb3409
      @dylanloeb3409 9 років тому +6

      I assume you mean at 4:30 - du just means when taking the integral it's in respect to "u" - so when you take the integral of e^u (which is still e^u) the du goes away because you took the integral of it and that's the answer. Finally you just put a +C at the end to account for your constant.

    • @jemcel0397
      @jemcel0397 9 років тому +2

      You drop the du when you integrate it already, you know, tagging a + C on the given equation

  • @awesomeman421
    @awesomeman421 11 років тому

    what is the program?

  • @yoyominecraftterraria
    @yoyominecraftterraria 8 місяців тому

    Ok but what do you do if the derivative is not outside??

    • @isavenewspapers8890
      @isavenewspapers8890 5 місяців тому

      If the derivative is a constant, multiply the inside of the integral by that constant, and divide by that same constant on the outside. This will keep the value of the integral the same, and now you can do the substitution.
      Otherwise, tough luck. Look for another method of integration.

  • @moeyk97
    @moeyk97 7 років тому

    where did du go?! i solved this problem on my own first and i got 1/6e^(x^3+x^2)+c ? :(

  • @szilike_10
    @szilike_10 5 років тому

    At 1:58 saying that really isn't du divided by dx.... could someone just explain that to me? I mean I kind of know its a notation trick. But calculating the derivative of a function actually means dividing a tiny change in u by a tiny change in x. I know I mess up something really badly, but please, could someone explain that to me?

    • @isavenewspapers8890
      @isavenewspapers8890 5 місяців тому +1

      It isn't actually any particular ratio between a tiny change in u and a tiny change in x. It's what that ratio approaches as the tiny change in x approaches 0.

  • @kielmeister
    @kielmeister 11 років тому

    Where does du go? It seems to just disappear when you sub your f(x) back in for u???

  • @ebukaajagu7417
    @ebukaajagu7417 7 років тому

    Isn’t the integral of e^u = (e^u)/u’

    • @aaryamangupta
      @aaryamangupta 5 місяців тому

      That is the derivative of u. Im a couple years late. I hope u doing good homie

  • @Master3clipse
    @Master3clipse 12 років тому +1

    makes sense!! lol

  • @joose9748
    @joose9748 6 років тому

    "oh lucky me the u' happens to be the ^ of e"...try showing harder examples.

  • @aamirhooda937
    @aamirhooda937 Рік тому

    I love you Sal. Please come to my house, I will make you food

  • @samanthabloodsaw2944
    @samanthabloodsaw2944 2 роки тому

    Samantha davson late

  • @gillianrose7752
    @gillianrose7752 7 років тому +1

    Times Eeee

  • @tincho15neem
    @tincho15neem 8 років тому +6

    It's really sad to see how everybody teachs this by "multiplying by dx each side" and nobody teachs this the right way.

    • @BetYouHateMeNow
      @BetYouHateMeNow 8 років тому +5

      not trying to offend you but a teacher has the right to teach however they want to teach. A good teacher teaches how they presume the most students will understand and the fact that most teachers choose this method speaks volumes. You come across as someone trying to be pompous.

    • @tincho15neem
      @tincho15neem 8 років тому +1

      The problem is that this way is wrong. It works, yes, but isn't the right way to do it and it confuses students. dx and dy are not numbers. To do this in this way you need to study a lot of other things before.

    • @BetYouHateMeNow
      @BetYouHateMeNow 8 років тому +1

      Anacleta Ludovica I agree and I am aware of why the dx "dissapears". But some people can learn it later as it isn't important to know at the stage when most people learn it at.

    • @tincho15neem
      @tincho15neem 8 років тому

      You can teach this at that stage, without multiplying anything. This is the way I prefer:
      Let f'(x)=e^x and g(x)=x^3+x^2
      Then f(x)=e^x and g'(x)=3x^2+2x
      So by the chain rule:
      Integral [f'(g(x)) * g'(x)] = f(g(x)) +c = e^(x^3+x^2) + c

    • @BetYouHateMeNow
      @BetYouHateMeNow 8 років тому

      I agree because i know this I can visually undo most usubstition problems. But its not necessary for someone to understand the way you learn and those wwho would benefit from it will simply understand it or will learn it on their own.

  • @Groundeyes
    @Groundeyes 9 років тому

    ....I failed to understand where the french come into this.

  • @warumonoLS
    @warumonoLS 10 років тому +14

    nerd

  • @bri-flows
    @bri-flows 11 років тому

    one person failed calculus

  • @yashgaikwad7516
    @yashgaikwad7516 6 років тому

    I am not happy with the explaination. It was purely mechanical without any intuition.

  • @curtismoxam5382
    @curtismoxam5382 9 років тому

    Okay. Teach us the method. You're acting as if we are mathematicians. Why use that as the U? Do better!

  • @MrSamuelini1995
    @MrSamuelini1995 11 років тому

    Lol magenta

  • @jasonzacharias2150
    @jasonzacharias2150 Рік тому

    Eeeeeeeeeeeeee

  • @seanm4124
    @seanm4124 6 років тому

    Thank you so much!