Week4Lecture3: Möbius transformatios, part I

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 13

  • @shacharh5470
    @shacharh5470 6 років тому +2

    Another way to show it's a bijcetion: You can define a mobius tra. using an invertible 2x2 matrix (a b c d), then show that composition of Mobious trs respects multiplication of matrices - if T is the transformation using matrix A and S using B then T after S is the transformation defined by (AB).
    As a corrolary, a Mobius transformation is invertible - its inverse is the trans. defined with the inverse matrix - so it's a bijection.

    • @xanderlewis
      @xanderlewis 9 місяців тому

      That doesn't work - Möbius transformations aren't (always) linear so can't be represented by matrices in the way you describe.

    • @shacharh5470
      @shacharh5470 9 місяців тому

      ​@@xanderlewisThat's not what I meant.
      Forget that matrices represent linear transformations on a vector space.
      I'm saying there is a grouop homomorphism between Mobius transformations (with composition) and GL(2,R).
      Check it for yourself.
      The matrix (a b; c d) is associated with the function f(z) -> (az+b)/(cz+d)

    • @xanderlewis
      @xanderlewis 9 місяців тому

      @@shacharh5470 OK! That makes a lot more sense and is a better way of putting it.

    • @xanderlewis
      @xanderlewis 9 місяців тому

      ...and thanks for replying five years later. ;-)

    • @Charky32
      @Charky32 2 місяці тому

      @@shacharh5470 hey can you help with a question, Suppose that M is a 2 × 2 complex matrix of determinant 1, and that T_M maps the upper half plane onto itself. Show that M is a real matrix.

  • @nilkarabulut3135
    @nilkarabulut3135 Рік тому

    Thank you so much

  • @CornishMiner
    @CornishMiner 8 років тому

    Right at the end, a division by zero of a non-zero number is defined as infinity. Not sure that it was made clear that in C ∪ {∞} z/0 = ∞ and z/∞ = 0, and that ∞/0 = ∞ and 0/∞ = 0, leaving 0/0 and ∞/∞ undefined.

  • @personxy7443
    @personxy7443 7 місяців тому

    Teacher,why we called it linear?(A linear function is T(ax+b)=aT(x)+b,but it is not

  • @formlessspace3560
    @formlessspace3560 9 років тому +1

    Trank you for this Video Petra

    • @Kybeline
      @Kybeline 7 років тому +1

      Thanks for every video, Petra :)

  • @esmirhodzic981
    @esmirhodzic981 7 років тому

    thank yoou for so awesome videos :D really helpful

  • @ganeshdilli2699
    @ganeshdilli2699 3 роки тому

    Too good