The Logistic Map: Attractors, Bifurcation, and Chaos (Part 1 of 2)

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 30

  • @xinzhewu6082
    @xinzhewu6082 Рік тому +2

    Thank you for such a clear explanation

  • @esotericmusicmachines8136
    @esotericmusicmachines8136 2 роки тому +5

    Really lovely explanation and I enjoy your enthusiasm. Thanks!

    • @CatSynthTV
      @CatSynthTV  2 роки тому

      Thanks! Glad you enjoyed the video 😺

  • @michaelwall3401
    @michaelwall3401 2 роки тому +4

    Fascinating! Thank you!

  • @pawekonopka5028
    @pawekonopka5028 Рік тому +1

    Excellent work!

  • @mintysingularity
    @mintysingularity 2 роки тому +2

    Yay for chaos!

  • @thomaschetubewaale6395
    @thomaschetubewaale6395 Рік тому +1

    Awesome, Can I get MatLab codes for this? Thanks

    • @CatSynthTV
      @CatSynthTV  Рік тому

      Thanks! I my coding for this in Swift, Python, and GNUPlot’s language. I’m sure MatLab versions exist.

  • @buddhabrot3
    @buddhabrot3 2 роки тому +1

    Great video thank you so much :)

    • @CatSynthTV
      @CatSynthTV  2 роки тому +1

      Thank you and glad you enjoyed it 😺

  • @mariusdmeridius6712
    @mariusdmeridius6712 2 роки тому +1

    CatSynth TV - Does Feigenbaum first constant have anything to do with exponential rate of change?

    • @CatSynthTV
      @CatSynthTV  2 роки тому

      Period doubling described by the Feigenbaum constant and exponential rate of change are different, though they both involve proportionality.

    • @mariusdmeridius6712
      @mariusdmeridius6712 2 роки тому +1

      @@CatSynthTV Thank you for your reply. I asked you that question because I am trying to understand eventual connection between exponential rate of change and Feigenbaum first constant. Doesn't the Feigenbaum first constant express ratio in bifurcation diagram, where the evolution of a dynamic system increases its complexity exponentially, leading to periodical chaos?

    • @CatSynthTV
      @CatSynthTV  2 роки тому +1

      Yes, the period doubling has a nearly exponential rate increase, which is why it converges to a specific boundary for the onset of chaos. So you are correct 😺

    • @mariusdmeridius6712
      @mariusdmeridius6712 2 роки тому +1

      @@CatSynthTV Thank you :)

    • @mariusdmeridius6712
      @mariusdmeridius6712 2 роки тому

      @@CatSynthTV Let me ask you one more question, please. Is there any reason why a mathematical expression of a physical process based on an exponential rate of change would include the first Feigenbaum constant?

  • @Sagitarria
    @Sagitarria 2 роки тому

    I’m struggling with the translation from logistic models and the quadratic of the logistic map

    • @CatSynthTV
      @CatSynthTV  2 роки тому +1

      Hi. The quadratic logistic map relates the derivative of the logistic function in population modules. If L is the logistic function then dL/dx = aL (1 - L). The right-hand side is the quadric function. If you treat that function as a map repeatedly applied to its output, you get the logistic map.
      Hope this helps. Please let me know if you have further questions and I will try my best to answer 😺

    • @Sagitarria
      @Sagitarria 2 роки тому +1

      @@CatSynthTV I feel like I’m almost there. But I need to explain to me over and over again by different people.

    • @Sagitarria
      @Sagitarria 2 роки тому +1

      @@CatSynthTV tysm

    • @CatSynthTV
      @CatSynthTV  2 роки тому

      You're welcome 😺

  • @kuhaneko
    @kuhaneko 6 місяців тому

    Why Haskell

  • @jangbi08
    @jangbi08 2 роки тому +2

    CatPhysics TV 😹

  • @minecraftavatarofhunterbiden
    @minecraftavatarofhunterbiden Рік тому +1

    Synthesized Cat Montage 2056 July

  • @Joker.87
    @Joker.87 2 роки тому

    For one logistic system we change our life we are stupid